Открыть главное меню

SportWiki энциклопедия β

Изменения

Энергообеспечение мышечной деятельности

6188 байт добавлено, 7 лет назад
Нет описания правки
Даже в абсолютном покое (во сне) человеку необходима энергия для обеспечения работы внутренних органов, поскольку любой вид деятельности требует расхода энергии. В таблице представлены данные о расходе энергии в различных видах спорта в пересчете на 1 кг массы тела человека в час. Вопреки существующему мнению спорт и физическая работа "сжигают" не так много калорий, на что обратили внимание немецкие исследователи (Кремер, Тренклер, 2000). В таблице приводится соотношение расхода энергии при работе в течение 1 ч и расхода калорий в соответствии с приемом адекватного количества пищевых продуктов.
Двигательная деятельность обеспечивается [[Сокращение скелетных мышц|сократительной способностью мышц]], которая зависит от скорости аккумуляции и расхода энергии. Между расходом и восстановлением энергии существует динамическое равновесие, которое зависит от многих факторов и существенно различается. например Например у бегунов: [[Спринтерский бег|спринтера ]] в забеге на 60 м и [[Стайерский бег|стайера ]] — на 42,195 км.
[[Психология тренера|Стратегия тренера ]] и медико-биологическое обеспечение при тренировке спортсменов, специализирующихся в [[Спринтерский бег|спринтерских ]] и [[Стайерский бег|стайерских ]] дистанциях, существенно различается. Тренировка спринтера преимущественно направлена на совершенствование скорости: он тренирует свои [[Скоростно-силовые качества|скоростные качества]], а стайер — [[выносливость]]. При этом интенсивность образования энергии для осуществления поставленных задач у них существенно отличается, а следовательно, разным должно быть и [[Питание спортсменов|питание ]] (его [[Калорийность рациона спортсмена|калорийность]], соблюдение необходимого [[Соотношение белков, жиров и углеводов|соотношения белков, углеводов и жиров]], динамика поступления каждого из ингредиентов в организм и др.).
[[Image:Tab1_8.jpg|300px|thumb|right|Расход энергии в различных видах спорта]]
Ежедневный расход энергии в различных видах спорта представлен в таблице.
Общая структура [[Годичный цикл подготовки|годичного цикла подготовки ]] практически во всех видах спорта включает три основных периода: подготовительный, соревновательный и переходный. В '''подготовительном периоде ''' выделяют общеподготовительный и специально-подготовительный этапы, в '''соревновательном периоде ''' [[Предсоревновательная подготовка|предсоревновательный ]] и этап непосредственной подготовки к соревнованиям.
[[Image:Ris1_11.jpg|300px|thumb|right|Общая структура тренировочных занятий в цикле подготовки к главным соревнованиям (Справочник IAAF)]]
[[Энергозатраты человека и пищевой рацион|Энерготраты ]] в каждый из периодов существенно отличаются, что требует особого внимания к компенсации энергодающих биомакромолекул в зависимости от вида выполняемой работы ([[Анаэробные тренировки|анаэробной]], смешанной или [[Аэробные нагрузки|аэробной]]). На представленной схеме не отражен период восстановления как после главных соревнований, так и во время [[Микроцикл|микро]]-, [[Мезоцикл|мезо]]- и макроциклов[[макроцикл]]ов. Однако на него следует обратить серьезное внимание, чтобы не вызвать эффект [[Перетренированность|перетренированности]]. Одним из факторов, вызывающих [[Перетренированность - признаки и лечение|перетренированность]], является неадекватное питание.
Способы сохранения энергии и реализации ее запасов для обеспечения движения могут быть разделены на два типа: [[Анаэробное окисление глюкозы|анаэробный ]] и [[Аэробное окисление глюкозы|аэробный]]. Они различаются между собой длительностью процесса, его интенсивностью и участием в нем кислорода.
'''Анаэробный алактатный''' (без участия [[Лактат|лактата]]) путь энергообеспечения мышечной деятельности используется для короткой и интенсивной работы ([[Спринт тренировка|спринт]]) — без участия кислорода, без образования [[Молочная кислота|молочной кислоты]], за счет [[Энергетические субстраты|энергетических ]] [[Фосфаты|фосфатов]].
'''Анаэробный лактатный путь''' энергообеспечения используется для средних и длинных дистанций — без участия кислорода, с образованием [[Молочная кислота|молочной кислоты]], при окислении [[Гликоген|гликогена]] и [[Глюкоза|глюкозы]].
'''Смешанная зона анаэробно-аэробной ''' производительности энергии характеризуется участием кислорода, использованием гликогена и свободных жирных кислот как источника энергии.
Взаимодействие процессов участия кислорода, источников энергии:
3)2 АДФ =>АТФ + АМФ.
 
4)[[гликоген]] или [[глюкоза]] + Р + АДФ => лактат + АТФ.
'''Аэробный процесс:'''
1) [[гликоген]] или [[глюкоза]] + Р + АДФ => лактат + АТФ: гликоген, глюкоза, жирные кислоты + Р + О<sub>2</sub> => СО<sub>2</sub> + Н<sub>2</sub>O + АТФ.
АТФ является главной биомакромолекулой, которая обеспечивает сокращение мышцы по схеме
Накопление энергии в клетках происходит за счет поступления в организм энергетически ценных продуктов животного и растительного происхождения. При этом [[углеводы]] обеспечивают 60 %, [[жиры]] — 25 %, [[Протеин|белки]] — 15 % энергии, необходимой для выполнения работы. Скорость накопления или восстановления при предварительном расходе энергии бывает различной в зависимости от функционального состояния организма, вида спорта, а также действия определенных лекарственных веществ.
[[Аэробное окисление глюкозы ]] с целью последующего [[Синтез АТФ|синтеза АТФ ]] происходит на первом этапе до двух молекул пировиноградной кислоты, которая превращается в ацетил-Ко А, окисление которого в свою очередь происходит в цикле лимонной кислоты и дыхательной цепи. При этом энергия АТФ расходуется на образование тепла и накапливается в клетках. Общий выход АТФ составляет 38 36 молекул. Аэробный механизм образования энергии (АТФ) из глюкозы в 18 раз более эффективен, чем анаэробный. Одним из факторов, который стимулирует поступление глюкозы в клетки мышц, является гипоксия.
Пути ресинтеза АТФ (КФ + АДФ => К + АТФ) в зависимости от расхода начинают функционировать параллельно и зависят от высокой концентрации АДФ. Из двух молекул АДФ образуется одна молекула АТФ (2АДФ АТФ + АМФ). Максимально эффективным является креатинкиназный путь ресинтеза АТФ:
Величины ежедневного расхода энергии в различных видах спорта, а также энергетическая емкость (ккал) основных энергодаюших продуктов у человека, масса тела которого 75 кг, представлены в таблице.
[[Image:Tab1_9.jpg|300px|thumb|right|Важнейшие биомакромолекулы — источники энергии, образующиеся из продуктов питания в организме человека с массой тела 75 кг (Astrand, 1970)]]
Запасы энергии в организме человека сохраняются и используются по-разному, в частности одни [[виды спорта]], где требуется высокий уровень выносливости, "потребляют" очень много энергии, а другие, например спринт, — значительно меньше. Отсюда следует, что для обеспечения достаточного количества энергии, прежде всего, следует учитывать конкретные условия: для выполнения какой работы и в каком виде спорта требуется энергия и о каком периоде спортивной деятельности идет речь (микро-, мезо- и макроциклы, соревнования и время после них).
В разные периоды подготовки (восстановление или соревнования) расход энергии может составлять от 1500 до 10 ООО 000 ккал в день.
Соотношение основных источников энергии для мышечной деятельности в зависимости от вида спорта приведено в таблице. Питание спортсменов в течение учебно-тренировочного процесса, перед соревнованиями, во время и после них кардинально различается.
'''Четвертая зона''' — умеренной мощности, включает все суперстайерские дистанции. Время бега составляет несколько часов, а энергообеспечение зависит от аэробных процессов.
 
'''Характеристика зон мощности в процессе выполнения физических упражнений'''
 
{| class="wikitable"
|-
! !! Характеристика физиологических показателей !! Виды упражнений
|-
| Максимальной анаэробной (анаэробной) || Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Энергообеспечение осуществляется за счет фосфагенной энергетической системы
(АТФ+КФ) при некотором участии лактацидной (гликолитической) системы. "Средняя" лёгочная вентиляция не превышает 20-30% от максимальной. ЧСС повышается ещё до старта - 140-150, а после финиша - 160-180 уд/мин. Концентрация лактата в крови после работы составляет 5-8 ммоль/л. Перед выполнением упражнений несколько повышается концентрация глюкозы в крови. До и в процессе выполнения упражнений в крови повышается концентрация катехоламинов и гормона роста, снижается концентрация инсулина. Кислородный запрос может составлять 7-14 л, а кислородный долг- 6- 12 л, то есть 90-95% от кислородного долга|| Бег на 100 м, спринтерская велогонка на треке, плавание и ныряние на дистанцию до 50 м.
Продолжительность - до 30 с
|-
| Околомаксимальной анаэробной (смешанной) || Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Предстартовое повышение ЧСС - до 150-160, после финиша пульс достигает 180-190
уд/мин. В процессе выполнения упражнений легочная вентиляция растёт и к завершению достигает 50-60% от максимальной рабочей вентиляции для данного спортсмена (60-80 л/мин.). Возрастает скорость потребления O2 и достигает 70-80% от индивидуального МПК. Концентрация лактата в крови после упражнения высокая - до 15 ммоль/л. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Концентрация глюкозы повышена - до 100- 120 мг% || Бег на 200-400 м, плавание на дистанциях до 100 м, бег на коньках на 500 м. Продолжительность от - 20 до 50 с
|-
| Субмаксимальной анаэробной || В развитии утомления определяющим фактором является недостаточное снабжение мышц кислородом (энергетическое обеспечение идёт за счёт анаэробного гликолиза). Кислородный запрос может достигать 20-40 л, а уровень энергетических затрат в 4-5 раз превышает максимум аэробного производства энергии. ЧСС, сердечный выброс, лёгочная вентиляция могут быть близки к максимальным значениям для конкретного спортсмена. Концентрация лактата в рабочих мышцах и крови - до 20-25 ммоль/л. Соответственно рН крови снижается до 7,0. Повышается глюкоза в крови - до 1 50 мг%. Высоко содержание в плазме крови катехоламинов и гормона роста. Под влиянием продуктов анаэробного распада меняется проницаемость клеточных мембран для белков, увеличивается их содержание в крови, они могут выходить в мочу, где их концентрация достигает 1 ,5%. || Бег на 800 м, плавание на 200 м, бег
на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек). Продолжительность - от 1 до 2 мин
|}
Проведя обстоятельный анализ, В. Д. Сонькин и О. В. Тиунова существенно дополнили выдвинутую концепцию и на основании большого статистического материала сделали собственные выводы по различным возрастным группам, а также и по лучшим мировым достижениям. Оказалось, что прирост мировых достижений у мужчин в зонах большой и умеренной мощности более выражен, чем в зонах максимальной и субмаксимальной мощности. Средняя скорость, с которой преодолевается каждая дистанция на 4 % в спринте и на 24 % в стайере, выше, чем это было 50 лет назад. Отмечено также, что различия в выносливости мужчин и женщин тем сильнее, чем ниже мощность нагрузки (скорость бега).
*[[Быстрые мышечные волокна]]
*[[Медленные мышечные волокна]]
*[[Виды физических нагрузок]]<br><br>*[[Энергетические субстраты]]*[[Обмен покоя]]*[[Основной обмен]] 
[[Категория:Тренинг]][[Категория:Литература]]
896
правок

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция