2149
правок
Изменения
м
''Описание рис. 2.5 Полулогарифмический график рис. 2.4. Связывание при более высоких концентрациях А и В было изучено в таких же условиях, как на рис. 2.4, где КА = 0,01 мкМ и Кв = 0,1 мкМ. На данном рисунке ось X отображена logI0 в пределах концентраций от 10~10 до > 10-5 М, что является снижением концентрации в 100 000 раз. Пересечение осей X и Y находится в 0, -10. Аффинитет — это способность препарата связываться со своим рецептором, которую измеряют через KD. Кривизна кривой связывания показывает природу связывания. Эта простая модель имеет значение 1, поскольку одна молекула D связывается с одной молекулой R. М — молярная концентрация.''
'''Классические рецепторы нейротрансмиттеров или гормонов в основном представлены крупными белками, содержащими участки, которые «распознаются» лекарствами и связываются с ними (рис. 2.1). Эти связывающие центры обычно ассоциированы с системой переноса'''
Стало ясно, что многие рецепторы являются белками. Они содержат как минимум один отдельный центр, с которым связываются и агонисты, и антагонисты. Когда связывается агонист, он запускает цепь трансдукции, которая либо непосредственно вызывает измеримый ответ (например, открытие канала), либо изменяет активность фермента, что в свою очередь приводит к измеримому ответу. Связь между действием агониста и трансдукцией может быть прямой или вовлекать в действие вторичные мессенджеры и каскад других белков. В общем случае трансдукцию вызывает не распознаваемый участок, а, скорее, происходящие аллостерические изменения рецепторной молекулы, обусловливающие каталитическую активность других частей белка (обычно во внутриклеточной среде). При этом другие части молекулы рецептора могут работать как мишени для других типов лекарств-ингибиторов, которые не являются конкурентными антагонистами.[[Image:Ph_2_1.jpg|300px|thumb|right|Рис. 2.1 Значки, обозначающие рецептор.]]
'''Активный комплекс агонист-рецептор вызывает клеточный ответ через реакцию трансдукции'''
Активный комплекс агонист-рецептор инициирует трансдукцию либо локально на уровне мембраны, либо внутриклеточно. Примеры системы трансдукции приведены далее. Общепризнано, что в большинстве случаев ассоциация агониста с рецептором ведет к конформационным изменениям последнего и возникновению активного комплекса лекарство-рецептор. Это дает основу для модели, с помощью которой можно объяснить различное действие агонистов, частичных агонистов и антагонистов.
Рис. 2.1 Значки, обозначающие рецептор.
С рецептором могут связываться различные типы лекарства. Здесь связывание определяет лекарство в качестве лиганда для рецептора, а результат связывания показывает, является ли лекарство агонистом, антагонистом, частичным агонистом или обратным агонистом:
В отсутствие агониста большинство рецепторов пребывают в состоянии покоя. Однако даже в этом случае рецептор может временно становиться активным, что приводит к низкоуровневому молекулярному ответу. Появление агониста изменяет равновесие в сторону активированного состояния.
Математическое соотношение между концентрацией агониста (А) и ответом определяется связыванием с рецептором (R) и ответом в результате формирования комплекса агонист-рецептор (AR), который активирует рецептор (R*). Поэтому А + R = AR =AR*. Для активации некоторых рецепторов необходима связь двух молекул агониста (А + А + R= AAR= AAR*). Для других рецепторов характерна реакция А + R + R = ARR = ARR*, т.е. присоединение агониста ведет к связыванию двух неактивных рецепторов в активированный гомодимер. Математическая основа для такого соотношения детально обсуждается далее. В книге агонисты указаны специальным значком (рис. 2.2).[[Image:Ph_2_2.jpg|300px|thumb|right| Рис. 2.2 Значок, обозначающий агониста. Этот значок обозначает препараты, которые активируют все молекулярные мишени, включая активаторы ферментов.]]
В большинстве клеток максимальный клеточный ответ на действие агониста происходит только тогда, когда активирована небольшая часть рецепторов. Другими словами, рецепторов обычно намного больше, чем необходимо для достижения максимального клеточного ответа. Этот избыток рецепторов (резервные рецепторы) очень важен, поскольку он увеличивает чувствительность клетки к малым изменениям концентрации агониста (см. далее).
</table>
Рис. 2.3 Значок, обозначающий антагониста. Этот значок обозначает препараты, которые блокируют активность других молекулярных мишеней, таких как ферменты (ингибиторы ферментов). Связывание антагониста может быть обратимым или необратимым. Различают как минимум шесть возможных типов антагонизма (табл. 2.2). Эффекты, проявляемые антагонистом в ответ на действие агониста, детально описаны далее. Для обозначения антагонистов будет использоваться значок, указанный на рис. 2.3.[[Image:Ph_2_3.jpg|300px|thumb|right|Рис. 2.3 Значок, обозначающий антагониста. Этот значок обозначает препараты, которые блокируют активность других молекулярных мишеней, таких как ферменты (ингибиторы ферментов).]]
'''Физиологический антагонизм отличается от фармакологического антагонизма'''
если [DR] заменить на [R] [D]/Kd (см. ранее).
Объединение этого уравнения с KD [DR] = [D] [R] дает:[[Image:Ph_2_5.jpg|300px|thumb|right|Рис. 2.5 Полулогарифмический график рис. 2.4]]
[DR]/[RJ = ([D]/Kd) (1 + [D]/Kd) (ф. 2.3)
при [DR]/[Rt], указывающее, что только один R в данный момент объединен с D.
'''Полулогарифмические графики обычно используют и для кривых концентрация-ответ, и для изучения связывания'''
При изучении связывания рецепторы инкубируют при различных концентрациях D, когда D мечен радиоактивным изотопом (обычно 3Н), затем их быстро фильтруют и промывают для удаления несвязанного лекарства. Последующий подсчет остаточной радиоактивности показывает, сколько лекарства осталось. Однако некоторая оставшаяся часть обусловлена простой неспецифической задержкой лекарства в порах фильтра либо между клетками или, вероятно, растворением в липидах ткани. Эффект неспецифического связывания выражается в процентах от специфического.
Рис. 2.4 Линейный график специфического и неспецифического рецепторного связывания двух препаратов, А и В, где KD = 0,01 мкМ (КА) и KD = 0,1 мкМ (Кв). По оси Y: связывание (образование AR или BR), выраженное в процентах от максимального специфического связывания А и В соответственно. По оси X: концентрации А и В. Примечание: шаг на оси концентраций равный (линейный), пересечение соответствует 0,0. мкМ — микромо-лярная концентрация.
Рис. 2.5 Полулогарифмический график рис. 2.4. Связывание при более высоких концентрациях А и В было изучено в таких же условиях, как на рис. 2.4, где КА = 0,01 мкМ и Кв = 0,1 мкМ. На данном рисунке ось X отображена logI0 в пределах концентраций от 10~10 до > 10-5 М, что является снижением концентрации в 100 000 раз. Пересечение осей X и Y находится в 0, -10. Аффинитет — это способность препарата связываться со своим рецептором, которую измеряют через KD. Кривизна кривой связывания показывает природу связывания. Эта простая модель имеет значение 1, поскольку одна молекула D связывается с одной молекулой R. М — молярная концентрация.
'''Исследования связывания дают ценную информацию о взаимодействиях между лекарством и рецептором'''
Важно, что если [D] достаточно высока, то большинство рецепторов будет связано с D (DR), несмотря на присутствие I. И наоборот, если [I] достаточно высока, большинство рецепторов будет связано с I (IR), несмотря на присутствие D. Таким образом, I конкурирует с D, a D c I. Конкуренция возникает из-за невозможности рецептора связать D и I одновременно. Конкурирование математически эквивалентно произведению константы диссоциации (1 + с), где с - концентрация конкурента, индуцирующего параллельный сдвиг кривой [DR] против log[D] (кривая доза-ответ) вправо по оси X. Сдвиг будет определяться log(l + с), где с = [I]/Kj (рис. 2.7).
Рис. 2.7 Специфическое связывание препарата (L) в присутствии конкурентного антагониста (I) при различных концентрациях [l]/K| = 1, 10, 100 или 1000. Как и на рис. 2.5, это полулогарифмический график, на котором ось X выражена в 1од10. Примечание: присутствие I сдвигает кривую концентрация-связывание для L вправо параллельно. Величина сдвига зависит от [1]/К|, при которой каждое 10-кратное увеличение вызывает параллельный сдвиг на log 1,0 (= 10). Кi- константа диссоциации I; М — молярная концентрация.
На этом построен метод экспериментального определения константы диссоциации конкурирующей молекулы. При любой [I] отношение доз (dose ratio) (DR), равное значениям [D], формирующим такую же [DR] в присутствии или в отсутствии С, рассчитывают как:
(DR - 1)/[I] =1/Кi (ф. 2.6)
Данный метод менее важен при исследовании связывания, но представляет большой интерес при оценке зависимости функциональная концентрация-ответ при взаимодействии агониста/антагониста с рецептором, когда ответ на [DR] измерен точнее, чем связывание. Добавление конкурентного антагониста I в присутствии агониста D эквивалентно уменьшению концентрации агониста на фактор (1 + [1]/Кi). Это приводит к сдвигу кривой ответ-log[агонист] вправо, который аналогичен сдвигу на рис. 2.7. Таким образом, первоначальные ответы определяются произведением доз агониста и DR, которое равно 1 + [1]/Кх.[[Image:Ph_2_7.jpg|300px|thumb|right|Рис. 2.7 Специфическое связывание препарата (L) в присутствии конкурентного антагониста (I) при различных концентрациях [l]/K]] ''Описание рис. 2.7'' Специфическое связывание препарата (L) в присутствии конкурентного антагониста (I) при различных концентрациях [l]/K| = 1, 10, 100 или 1000. Как и на рис. 2.5, это полулогарифмический график, на котором ось X выражена в 1од10. Примечание: присутствие I сдвигает кривую концентрация-связывание для L вправо параллельно. Величина сдвига зависит от [1]/К|, при которой каждое 10-кратное увеличение вызывает параллельный сдвиг на log 1,0 (= 10). Кi- константа диссоциации I; М — молярная концентрация
== Классификация рецепторов лекарств ==
*[[Рецепторы, связанные с G-белками|G-белок-связанные рецепторы]];
*ДНК-связанные рецепторы;