Открыть главное меню

SportWiki энциклопедия β

Противоопухолевые препараты (средства)

Версия от 19:27, 16 августа 2013; Febor (обсуждение | вклад) (Новая страница: «{{Клинфарм3}} == ХИМИОТЕРАПИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ П. Калабрезы, Б. Чабнер ВВЕД…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)

Источник:
Клиническая фармакология по Гудману и Гилману том 3.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.

== ХИМИОТЕРАПИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ

П. Калабрезы, Б. Чабнер ВВЕДЕНИЕ

Успехи химиотерапии занимают особое место среди достижений медицины за последние 40 лет. Разработаны методы лечения ранее смертельных заболеваний — опухолей яичка, лимфом, лейкозов. Теперь химиотерапию назначают при заболеваниях, лечение которых прежде ограничивалось лишь местным воздействием (хирургическое лечение, лучевая терапия) или симптоматическими мероприятиями. Кроме того, после операций по поводу рака молочной железы и толстой кишки широко применяют адъювантную химиотерапию, а лечение других опухолей (местнораспространенных опухолей головы и шеи, рака легкого, пищевода и шейки матки, сарком мягких тканей и солидных опухолей у детей) начинают с комбинированного воздействия, включающего химиотерапию. Клиническая онкология постоянно развивается. Разрабатываются и проходят клинические испытания новые методы, в том числе генотерапия, использование иммуномодуляторов, колониестимулирующих факторов, индукторов дифференцировки и ингибиторов ангиогенеза. Многие из этих методов уже применяются в клинике, причем не только в онкологии. Например, противоопухолевые препараты используют в качестве иммунодепрессантов при ревматоидном артрите (метотрексат, циклофосфамид), при трансплантации органов (метотрексат, азатиоприн), при серповидноклеточной анемии (гидроксимочевина), при псориазе (метотрексат); триметрек-сат и фолинат кальция применяют как антипротозойные средства. Таким образом, с этими препаратами имеют дело врачи разных специальностей.

В то же время противоопухолевые средства, как никакие другие, имеют очень узкий терапевтический диапазон и иногда вызывают тяжелые побочные эффекты. Поэтому для успешного применения этих препаратов необходимо знать их фармакокинетику, механизм действия и лекарственные взаимодействия.

Новые противоопухолевые средства обычно получают, испытывая действие различных природных и синтетических соединений на злокачественные новообразования у животных, обычно на лейкоз у мышей. Большинство препаратов, открытых в первые 20 лет развития химиотерапии (1950—1970-е гг.), взаимодействуют с ДНК или ее предшественниками, повреждая ДНК или нарушая ее репликацию (рис. IX. 1). В последние годы благодаря изучению патогенеза злокачественных новообразований интерес исследователей сместился от более привычных природных (например, паклитаксела) и полусинтетиче-ских (например, этопозида) противоопухолевых препаратов, нарушающих пролиферацию клеток, к веществам с другими механизмами действия. Так, ИЛ-2 стимулиру

ет пролиферацию NK-лимфоцитов и цитотоксических Т-лимфоцитов, в ряде случаев вызывая ремиссию при раке почки и меланоме — опухолях, устойчивых к другим препаратам. Третиноин (полностью транс-ретиноевая кислота) вызывает дифференцировку опухолевых клеток и позволяет достичь ремиссии при остром промиелоци-тарном лейкозе, даже если стандартная химиотерапия неэффективна. Близкий по строению изотретиноин (13-^ис-ретиноевая кислота) снижает риск метахронных опухолей головы и шеи. Широкие перспективы открывает воздействие на онкогены и опухолевые антигены. Например, при хроническом миелолейкозе в результате транслокации возникает химерный ген BCR-ABL1, кодирующий белок с тирозинкиназной активностью, который стимулирует пролиферацию лейкозных клеток и блокирует их апоптоз. Ингибитор этой тирозинкиназной активности, иматиниб, существенно повышает вероятность ремиссии на развернутой стадии заболевания при устойчивости к стандартной химиотерапии. Аналогично действуют препараты, мишенью которых служат опухолевые антигены. Например, моноклональные антитела к рецептору ЕгЪВ2 эффективны при раке молочной железы. В будущем препараты, разработанные с учетом молекулярно-генетических особенностей опухоли, способны радикально изменить подход к лечению злокачественных новообразований (Kaelin, 1999). В табл. IX. 1 обобщены данные о противоопухолевых препаратах. Классификация, приводимая в гл. 52, представляется наиболее удобной для описания этих препаратов.

Однако новые препараты едва ли полностью вытеснят стандартную химиотерапию, так как ее эффективность в последние годы возросла, а побочное действие все чаще удается предотвратить или устранить. Эти успехи связаны, в частности, со следующими факторами.

1. Противоопухолевые препараты (часто в сочетании с хирургическим лечением или лучевой терапией) стали назначать на ранних стадиях заболевания, когда опухоль более чувствительна к химиотерапии и лечение лучше переносится. Адъювантную и неоадъювантную химиотерапию используют при опухолях головы и шеи, раке пищевода, легкого, молочной железы.

2. Применение колониестимулирующих факторов (препараты Г-КСФ и ГМ-КСФ; гл. 54) повысило безопасность высокодозной химиотерапии благодаря сокращению периода лейкопении и снижению риска тяжелых инфекций. Клонирован ген тромбопоэтина, однако его препараты пока мало применяют в клинике.

3. Изучение механизмов устойчивости к противоопухолевым препаратам позволило разработать более рациональные схемы химиотерапии; высокодозную химиотерапию стали применять на более ранних этапах лечения.

Назначение только одного противоопухолевого препарата в низких дозах способствует селекции устойчивых

опухолевых клеток. Устойчивость бывает избирательной, например за счет снижения активности фермента, активирующего данный препарат (в частности, для цитараби-на это дезоксицитидинкиназа), но возможна и полирезистентность, связанная с экспрессией белков, выводящих противоопухолевые препараты из клетки, таких, как Р-гликопротеид, кодируемый геном АВСВ1. Этот белок относится к семейству АТФ-зависимых АВС-перенос-чиков, обеспечивающих устойчивость к различным природным и полусинтетическим противоопухолевым препаратам. Выяснилось, что полирезистентность могут вызывать и мутации, приводящие к развитию опухоли, например мутации гена — супрессора опухолевого роста ТР53. Этот и подобные ему гены регулируют пролиферацию клеток, и утрата функции таких генов вызывает злокачественную трансформацию. Мутации гена ТР53, его утрата или усиление экспрессии гена BCL2 (его транслокация наблюдается при лимфоме из клеток центра фолликула) нарушают апоптоз, вследствие чего опухолевые клетки не гибнут, несмотря на повреждение ДНК. По-ви-димому, сохранность механизмов апоптоза во многом определяет чувствительность к противоопухолевым препаратам, поэтому идет поиск препаратов, которые восстанавливают способность опухолевых клеток к апопто-зу. Механизмы устойчивости к противоопухолевым препаратам подробно описаны в гл. 52.

При разработке схем химиотерапии надо учитывать ряд факторов. Во-первых, полихимиотерапия обычно более эффективна, чем монохимиотерапия, — во многом из-за того, что противоопухолевые препараты с разными точками приложения усиливают действие друг друга Во-вторых, желательно сочетать препараты, отличающиеся по механизмам устойчивости и основным побочным эффектам. В-третьих, для предотвращения рецидива опухоли необходимо назначать дозы препаратов, близкие к максимальным, при максимально частом их введении; иными словами, высокая интенсивность дозы (количество препарата, вводимое за единицу времени) -ключевой фактор успеха химиотерапии. Наконец, уничтожение опухоли требует большого числа курсов лечения, так как опухолевая масса обычно превышает 1 г ПО9 клеток), а каждый курс химиотерапии уничтожает менее 99% клеток.

Клеточный цикл. Для правильного назначения противоопухолевых препаратов важно понимать кинетику клеточной пролиферации. Многие из них действуют за счет повреждения ДНК и наиболее активны в периоде S, когда происходит репликация ДНК, тогда как другие (алкалоиды розового барвинка и таксаны) нарушают митоз, препятствуя образованию веретена деления. Такие препараты действуют лишь на делящиеся клетки, поэтому опухоли с высокой ростовой фракцией наиболее чувствительны к химиотерапии. Однако большинство противоопухолевых средств поражают и нормальные быстро делящиеся клетки (в костном мозге, волосяных фолликулах, слизистой ЖКТ), что ограничивает применение этих средств. В то же время опухали с низкой ростовой фракцией (рак толстой кишки или легкого) нередко бывают устойчивы к химиотерапии. Хотя продолжительность клеточного цикла у клеток разных типов неодинакова, деление всех клеток происходит по обшей схеме. В клеточном цикле выделяют следующие периоды (рис. IX.2): 1) G(, или пре-синтетический период, 2) S, или синтетический период, 3) G2, или постсинтетический период и 4) митоз. В результате митоза из клетки с двойным количеством ДНК, находившейся в периоде G2, образуются две дочерние клетки. Каждая из них может сразу начать новый клеточный цикл, вступив в период G,, или перейти в состояние покоя (период G0). Клетки некоторых тканей в периоде G0 дифференцируются и утрачивают способность к последующему делению. Многие другие клетки, особенно в медленно растущих опухолях, после длительного пребывания в покое могут снова начать делиться. Достигая контрольной точки на границе периодов G, и S, клетки с поврежденной ДНК подвергаются апоптозу, если у них сохранен ген ТР53и кодируемый им белок р53 выполняет свои контрольные функции. При мутаииях этого гена клеткам удается избежать апоптоза: они вступают в период S, делятся, и некоторые из них могут дать начало популяции клеток, обладающих лекарственной устойчивостью. Таким образом, для разработки схем химиотерапии и новых противоопухолевых препаратов необходимо знать, как протекает клеточный цикл и регулируется пролиферация нормальных и опухолевых клеток. Практические рекомендации. Лечение большинства онкологических больных требует сочетания различных методов, включая хирургическое лечение, лучевую терапию и химиотерапию. Каждый из них имеет свои преимущества и недостатки. Понятно, что не все противоопухолевые препараты и их сочетания применимы в каждом случае. Необходимо учитывать степень поражения печени и почек, костного мозга, наличие сопутствующих заболеваний и общее состояние больного. Однако нарядус этим существуют и другие факторы, хуже поддающиеся оценке, — естественное течение заболевания, готовность больного переносить длительное тяжелое лечение с его побочными эффектами, возможные отдаленные последствия лечения (как благоприятные, так и неблагоприятные).

Рисунок IX. 1. Точки приложения противоопухолевых препаратов.

Таблица IX. 1. Противоопухолевые препараты

Класс

Подкласс

Название

Заболевания

Алкилирующие

средства

Хлорэтил амины

Хлорметин

Лимфогранулематоз, лимфомы

Циклофосфамид

Ифосфамид

Мелфалан

Хлорамбуцил

Острый и хронический лимфолейкоз, лимфогранулематоз, лимфомы, миеломная болезнь, нейробластома, опухоли яичка, саркомы мягких тканей, нефробластома, рак молочной железы, яичников, шейки матки, легкого

Миеломная болезнь, рак молочной железы, яичников

Хронический лимфолейкоз, макроглобулинемия Вапьденстрема, лимфогранулематоз, лимфомы

Метилмеламины и этиленимины

Альтретамин

ТиоТЭФ

Рак яичников

Рак мочевого пузыря, молочной железы, яичников

Алкилсульфонаты

Бусульфан

Хронический миелолейкоз

Производные

нитрозомочевины

Кармустин

Стрептозоцин

Лимфогранулематоз, лимфомы, миеломная болезнь, первичные опухоли головного мозга, меланома

Злокачественная инсулинома, карциноид

Триазены

Дакарбазин

Темозоломид

Меланома, лимфогранулематоз, саркомы мягких тканей Глиомы, меланома

Антиметаболиты

Антагонисты фолиевой кислоты

Метотрексат

Острый лимфолейкоз, грибовидный микоз, хориокарцино-ма, остеогенная саркома, опухоли головы и шеи, рак молочной железы, легкого

Аналоги

пиримидинов

Фторурацил

Флоксуридин

Цитарабин

Гемцитабин

Рак молочной железы, толстой кишки, желудка, поджелудочной железы, яичников, мочевого пузыря, опухоли головы и шеи, предраковые заболевания кожи (местно)

Острый миелолейкоз и лимфолейкоз

Рак поджелудочной железы, яичников

Аналоги пуринов

Меркаптопурин

Тиогуанин

Пентостатин

Кладрибин

Флударабин

Острый лимфолейкоз, острый и хронический миелолейкоз

Волосатоклеточный лейкоз, грибовидный микоз, хронический лимфолейкоз, лимфома из малых лимфоцитов

Природные и полусинтетические препараты

Алкалоиды розового барвинк

Винбластин

а

Лимфогранулематоз, лимфомы, опухоли яичка, рак молочной железы

Винкристин

Острый лимфолейкоз, лимфогранулематоз, лимфомы, нейробластома, нефробластома, рабдомиосаркома, мелкоклеточный рак легкого

Таксаны

Паклитаксел

Доцетаксел

Рак яичников, молочной железы, легкого, опухоли головы и шеи

Эпиподофилло-

токсины

Этопозид

Тенипозид

Лимфогранулематоз, лимфомы, острый миелолейкоз, опухоли яичка, саркома Капоши, рак легкого, молочной железы

Производные

камптотецина

Топотекан

Иринотекан

Рак яичников, толстой кишки, мелкоклеточный рак легкого

Противоопухоле вые антибиотики

Дактиномицин

Даунорубицин

Доксорубицин

Блеомицин

Митомицин

Хориокарцинома, нефробластома, рабдомиосаркома, саркома Капоши, опухоли яичка

Острый миелолейкоз и острый лимфолейкоз

Саркомы (мягких тканей, остеогенная и др.), лимфогранулематоз, лимфомы, острые лейкозы, нейробластома, рак молочной железы, мочевых путей и половых органов, щитовидной железы, легкого, желудка

Герминогенные опухоли яичка и яичников, лимфогранулематоз, лимфомы, опухоли головы и шеи, рак кожи, пищевода, легкого, мочевых путей и половых органов

Рак желудка, шейки матки, толстой кишки, молочной и поджелудочной железы, мочевого пузыря, опухоли головы и шеи

Ферменты

Аспарагиназа

Интерферон а-2а Интерферон а-2Ь

Острый лимфолейкоз

Волосатоклеточный лейкоз, хронический миелолейкоз, миеломная болезнь, грибовидный микоз, лимфомы, саркома Капоши, меланома, карциноид, рак почки, яичников, мочевого пузыря

Природные и полусинтетические препараты

Другие группы

Биотерапевтиче-ские средства

Альдеслейкин

Целмолейкин

Меланома, рак почки

Препараты

платины

Цисплатин

Карбоплатин

Опухоли яичка, нейробластома, остеогенная саркома, рак яичников, мочевого пузыря, легкого, щитовидной железы, шейки и тела матки, опухоли головы и шеи

Антрацендионы

Митоксантрон

Острый миелолейкоз, рак молочной и предстательной желез

Производные

мочевины

Гидроксимочевина

Хронический миелолейкоз, эритремия, тромбоцитемия, меланома

Производные

метилгидразина

Прокарбазин

Лимфогранулематоз

Средства, угнетающие кору надпочечников

Митотан

Аминоглутетимид

Рак коры надпочечников Рак молочной железы

Ингибиторы

тирозинкиназы

Иматиниб

Хронический миелолейкоз

Гормональные

средства

Глюкокортикоиды

Преднизон (см. также гл. 60)

Острый и хронический лимфолейкоз, лимфогранулематоз, лимфомы, рак молочной железы

Прогестагены

Гидроксипрогестерон

Медроксипрогестерон

Мегестрол

Рак тела матки, рак молочной железы

Эстрогены

Диэтилстильбэстрол Этинилэстрадиол (см. также гл. 58)

Рак молочной и предстательной желез

Антиэстрогены

Тамоксифен

Анастрозол

Рак молочной железы

Андрогены

Тестостерон Флуоксиместерон (см. также гл. 59)

Рак молочной железы

Антиандрогены

Флутамид

Рак предстательной железы

Аналоги

гонадолиберина

Лейпрорелин

Рак предстательной железы

Не следует забывать, что эффективность описанных в этой главе противоопухолевых препаратов зависит от общего состояния больного. Известно, что в отсутствие истощения, тяжелых метаболических нарушений, инфекций и других сопутствующих заболеваний химиотерапия переносится лучше и приносит больше пользы, чем утя-желых больных. Хорошо, когда у больного сохранены

Рисунок IX.2. Клеточный цикл и активность противоопухолевых препаратов в разных его периодах. Некоторые препараты проявляют цитотоксичность во всех периодах клеточного цикла. Pratt etal., 1994.

функции печени и почек, а костный мозг не поврежден опухолевой инфильтрацией, предыдущей химиотерапией или облучением (особенно облучением позвоночника и костей таза). И все же химиотерапия приносит огромную пользу даже в тяжелых случаях. Способы предсказания эффективности того или иного препарата в каждом конкретном случае пока еще изучаются; вероятно, в будущем определение молекулярных маркеров опухоли позволит назначать именно те препараты, к которым она наиболее чувствительна. Фармакокинетика противоопухолевых препаратов у разных больных также неодинакова, поэтому сложно определить риск побочных эффектов. Причины этих различий не всегда ясны — могут играть роль индивидуальные различия в метаболизме препаратов, в сохранности костного мозга, а также лекарственные взаимодействия. Устранение побочных эффектов требует интенсивной поддерживающей терапии, включая переливание тромбоцитарной массы, назначение антибиотиков и колониестимулирующих факторов (гл. 54). Встречается и отсроченное поражение сердца, легких или почек, ведущее к стойкому нарушению функции органа и даже смерти больного. К счастью, следование стандартным схемам и изложенным ниже принципам позволяет свести риск этих осложнений к минимуму.

Б. Чабнер, Д. Райен, Л. Пас-Арес,

52 Р. Гарсиа-Карбонеро, П. Калабрезы

ПРОТИВООПУХОЛЕВЫЕ СРЕДСТВА

I. Алкилирующие средства

Историческая справка. Сернистый иприт ф,Р'-дихлордиэтилсу-льфид) был синтезирован в 1854 г., но его кожно-нарывное действие описано лишь в 1887 г. В Первую мировую войну врачи уделяли основное внимание действию сернистого иприта на кожу, глаза и дыхательные пути. Позже выяснилось, что он вызывает и тяжелое системное поражение. В 1919 г. Крумбхаар и Крумбхаар опубликовали данные, согласно которым для отравления сернистым ипритом характерна лейкопения, а на аутопсии обнаруживаются аплазия костного мозга, атрофия лимфоидной ткани и изъязвление слизистой ЖКТ.

Между двумя мировыми войнами активно исследовали химические и биологические свойства азотистых ипритов (хлорэ-тиламинов). Выраженная токсичность этих веществ по отношению к лимфоидной ткани навела Гилмана, Гудмана и Догерти на мысль изучить их действие на перевиваемую лимфосаркому мышей. В 1942 г. прошли первые клинические испытания, положившие начало современной химиотерапии (Gilman, 1963).

Поскольку азотистые иприты рассматривались как боевые отравляющие вещества, в то время все исследования были засекречены. Результаты были опубликованы лишь по окончании Второй мировой войны (см. Gilman and Philips, 1946, а также более поздний обзор Ludlum and Tong, 1985).

Синтезированы тысячи производных хлорэтиламинов, но из них лишь единицы в определенных клинических ситуациях оказались лучше первого препарата этой группы — хлормети-на. В настоящее время используются 5 основных подклассов алкилирующих средств: 1) хлорэтиламины, 2) этиленимины,

3) алкилсульфонаты, 4) производные нитрозомочевины и 5) три-азены.

Химические свойства. Все алкилирующие средства имеют сильные электрофильные группы, которые путем образования кар-бкатионов или переходных комплексов взаимодействуют с нуклеофильными группами (фосфатными, сульфгидрильными, ими-дазольными, гидрокси-, карбокси- и аминогруппами) других молекул с образованием ковалентной связи. Цитотоксическое действие этих препаратов напрямую связано с алкилированием ДНК. Бифункциональные алкилирующие средства (например, хлорэтиламины) наиболее активно соединяются с атомом N-7 гуанина — возможно, их биологическое действие связано главным образом с этой реакцией. Однако алкилированию подвергаются и другие атомы азотистых оснований (особенно атомы N-1 и N-3 аденина, N-3 цитозина и 0-6 гуанина), а также фосфатные группы ДНК, аминогруппы и сульфгидрильные группы белков.

Рассмотрим взаимодействие алкилирующих средств с атомом N-7 гуанина на примере хлорметина (рис. 52.1). На первом этапе протекает реакция мономолекулярного нуклеофильного замещения (SN1) с высвобождением аниона хлора, образованием карбкатиона и замыканием одной из хлорэтильных групп в положительно заряженное этилениминовое кольцо — образуется высокоактивное промежуточное соединение (рис. 52.1, А). Третичный азот хлорметина становится нестабильным четвертичным, и промежуточное соединение быстро реагирует с нуклеофильными (электроотрицательными) участками различных молекул. Эти реакции идут по механизму бимолекулярного нуклеофильного замещения (SN2). Алкилирование азота гуанина (рис. 52.1, Б) имеет ряд важных последствий. Во-первых, гуанин находится в ДНК преимущественно в лактамной форме, что позволяет ему образовывать водородные связи с цитозином

комплементарной цепи. Однако при алкилировании гуанина атом N-7 становится четвертичным, получая положительный заряд, из-за чего гуанин приобретает свойства кислоты и переходит в лактимную форму. При репликации ДНК измененный гуанин образует пару уже не с цитозином, а с тимином, что ведет к замене пары гуанин—цитозин на пару аденин—тимин. Во-вторых, алкилирование дестабилизирует имидазольное кольцо гуанина, что приводит к раскрытию кольца и отщеплению гуанина. Все эти повреждения ДНК требуют репарации. В-третьих, хлорэтиламины (например, хлорметин) способны к циклизации второй хлорэтильной группы и алкилированию второго гуанина или другой нуклеофильной группы с образованием сшивки цепей ДНК или ДНК с белком, что резко нарушает функцию ДНК. Как цитотоксичность, так и мутагенность алки-лирующих средств можно объяснить любым из перечисленных процессов, однако активность бифункциональных алкилирую-щих средств коррелирует именно с числом сшивок между цепями ДНК (Garcia et al., 1988). Механизм гибели поврежденных клеток до конца не ясен (см. ниже, «Механизм действия»).

Все хлорэтиламины неустойчивы, хотя и в различной степени, поэтому при использовании каждого из этих препаратов надо учитывать его химические свойства. Так, хлорметин крайне нестабилен и почти полностью вступает в химические реакции

уже через несколько минут после введения. Другие препараты, например хлорамбуцил, достаточно устойчивы для приема внутрь. Действие циклофосфамида проявляется только после его активации микросомальными ферментами печени.

Этиленимины (например, ТиоТЭФ) реагируют по механизму бимолекулярного нуклеофильного замещения (SN2); поскольку раскрытие этилениминового кольца катализируется ионами Н+, они более активны при низком pH. Структурно-функциональная зависимость. Алкилирующие средства — неоднородная группа соединений, которые способны in vivo вызывать присоединение алкильных групп к ДНК и другим макромолекулам. Активность препарата зависит от его физических и химических свойств — липофильности, способности проникать через биологические мембраны, Kd, устойчивости в водном растворе и сродства к различным участкам макромолекул. Некоторые наиболее эффективные препараты, например циклофосфамид и производные нитрозомочевины, приобретают способность к алкилированию лишь in vivo в результате сложных химических превращений.

Хлорэтиламины, или азотистые иприты, можно рассматривать как аналоги сернистого иприта, в котором сера замещена азотом: их активность обеспечивают также две хлорэтильные группы. В прошлом широко применялся хлорметин, но затем были получены его модификации с большей устойчивостью и избирательностью действия, а потому и менее токсичные. Чтобы создать устойчивые препараты для приема внутрь, активный фрагмент хлорметина соединяли с аминокислотами (например, с фенилаланином — так был получен мелфалан), замешенным бензольным кольцом (например, с фенилбутиратом — так был получен хлорамбуцил), пиримидинами (например, с урацилом) и другими веществами (рис. 52.2). Хотя высокой избирательности достичь не удалось, некоторые из полученных препаратов обладали важными преимуществами перед хлорметином.

Относительно устойчивые хлорэтиламины удалось получить путем соединения с замещенным бензольным кольцом. За счет смещения к нему электронной плотности от азота у этих веществ сильно снижена способность к образованию этилениминового кольца и карбкатионов, что позволяет им не сразу реаги-ровать с макромолекулами крови и других тканей, а распределяться по всему организму. Среди ароматических хлорэтилами-нов основное значение имеют хлорамбуцил и мелфалан, эти препараты можно назначать внутрь.

Роль метаболической активации в действии алкилируюших средств хорошо видна на примере циклофосфамида, наиболее широко применяемого препарата из этой группы. При его разработке исходили из двух предположений. Во-первых, что замещение метильной группы хлорметина оксазафосфориновым кольцом снизит реактивность, так как хлорэтильные группы не смогут ионизироваться, пока не будет расщеплена фосфоамид-ная связь в этом кольце. Во-вторых, что в опухолях повышена активность фосфатаз и фосфамидаз, способных расщеплять ок-сазафосфориновое кольцо, обеспечивая таким образом избирательную активацию препарата в опухолевых клетках. Как и предполагалось, циклофосфамид обладает достаточной устойчивостью в водном растворе, а его алкилируюшая, цитотокси-

Рисунок 52.2. Хлорэтиламины (азотистые иприты), применяемые в клинике.

ческая и мутагенная активность in vitro оказались слабыми. В то лее время при введении онкологическим больным и экспериментальным животным препарат проявлял выраженную противоопухолевую активность, а кроме того, обладал мутагенным и канцерогенным действием. Однако гипотеза об активации цик-лофосфамида фосфатазами и фосфамидазами оказалась неверной. В действительности он гидроксилируется микросомаль-ными ферментами печени (рис. 52.3), и затем его активные метаболиты попадают в опухолевые клетки (см. ниже). Избирательное действие циклофосфамида на некоторые опухоли частично объясняется способностью нормальных тканей, например ткани печени, разрушать эти метаболиты с помощью альде-гиддегидрогеназы и других ферментов.

Дакарбазин активируется микросомальными ферментами печени путем отщепления от атома азота одной из метильных групп. В опухолевых клетках от образовавшегося вещества спонтанно отделяется алкилирующий фрагмент — катион метилдиазония. Близкий по строению триазен темозоломид активируется спонтанно; этот препарат применяется при глиомах и меланоме (Agarwala and Kirkwood, 2000). Его структурная формула следующая:

Рисунок 52.3. Метаболизм циклофосфамида.

Ифосфамид, как и циклофосфамид, содержит оксазафосфо-риновое кольцо. Оба препарата содержат по две хлорэтильные группы, но у и фосфа мида одна из них связана с азотом оксаза-фосфоринового кольца, тогда как у циклофосфамида обе группы связаны с внециклическим азотом. Ифосфамид также активируется в печени путем гид роке ил ирован ия, однако его активация происходит медленнее. При этом значительная часть хлорэтиль-ных групп окисляется до хлораиетальдегида. Очевидно, с этим связаны необходимость применения более высоких доз ифосфа-мида и некоторые различия в спектре противоопухолевой активности.

Производное триазена дакарбазин (5-(3,3-диметил-1-триазе-но)-имидазол-4-карбоксамид] вначале считался антиметаболитом, однако он действует как алкилирующее средство. Его структурная формула следующая:

К производным нитрозомочевины относятся кармустин 11,3-бис-(2-хлорэтил)-1 -нитрозомочевина], ломустин [ 1 -(2-хло-рэтил)-3-циклогексил-1-нитрозомочевина], его метильное производное семустин, а также противоопухолевый антибиотик стрептозоцин. Эти препараты спонтанно распадаются на алкилирующий и карбамоилирующий фрагменты (рис. 52.4). Структурная формула кармустина следующая:

Все производные нитрозомочевины, обладающие противоопухолевой активностью, спонтанно распадаются, выделяя алкилирующий фрагмент — хлорэтильный карбкатион. Это силь-

Рисунок 52.4. Механизм действия кармустина.

ный электрофил, быстро связывающийся с различными молекулами, включая гуанин, цитозин и аденин (Ludlum, 1990). После присоединения к ДНК он может отщеплять хлор и образовывать сшивки внутри одной цепи или между двумя цепями ДНК. Эта реакция протекает относительно медленно, и ДНК может быть восстановлена метилгуанин-ДНК-метилтрансфе-разой (Dolan et al., 1990). Усиленный синтез данного фермента в глиомах сопровождается устойчивостью к производным нитро-зомочевины и препаратам, метилирующим ДНК (дакарбазину, темозоломиду и прокарбазину). Как и в случае хлорэтилами-нов, цитотоксичность производных нитрозомочевины связывают со сшивкой цепей ДНК (Hemminki and Ludlum, 1984). Кроме карбкатиона при распаде кармустина, ломустина и сему-стина образуется замещенный изоцианат, карбамоилирующий остатки лизина в белках. В результате последней реакции, по-видимому, инактивируются ряд ферментов, участвующих в репарации ДНК.

Поскольку действие хлорэтиламинов начинается с образования положительно заряженного этилениминового кольца, не удивительно, что стабильные этиленимины также обладают противоопухолевой активностью. Ряд соединений из этой группы, включая триэтиленмеламин и ТиоТЭФ, применяется в клинике. В стандартных дозах практически единственным побочным действием ТиоТЭФ является угнетение кроветворения, поэтому он широко используется при высокодозной химиотерапии. Альтре-тамин (гексаметилмеламин) рассматривается в этом разделе из-за его структурного сходства с триэтиленмеламином. Альтре-тамин активируется микросомальными ферментами печени (Friedman, 2001), которые деметилируют его с выделением формальдегида. Выявлена связь между степенью деметилирования и противоопухолевой активностью препарата у мышей.

Представляет интерес ряд соединений из обширной группы эфиров алкансульфоновых кислот. Одно из них, бусульфан, используется при хроническом миелолейкозе и при высокодозной химиотерапии. Его структурная формула следующая:

Бусульфан относится к симметричным эфирам метансуль-фоновой кислоты и двухатомных спиртов. Получены эфиры спиртов с длиной цепи от 2 до 10 атомов углерода, наибольшая активность и терапевтический диапазон достигаются при промежуточном числе атомов (4 или 5). При инкубации с ДНК in vitro бусульфан образует сшивки между гуанинами (Tong and Ludlum, 1980).

Механизм действия

Мы рассмотрим механизмы действия всех алкилирую-щих средств в одном разделе. Хотя в их действии много общего, следует указать на ряд важных различий. Цитотокснческое действие. Основной фармакологический эффект алкилируюших средств — нарушение репликации ДНК и деления клеток. Способность этих препаратов повреждать ДНК в быстро делящихся клетках объясняет как их противоопухолевое действие, так и многие побочные эффекты. В первую очередь страдают ткани с высоким пролиферативным индексом, но некоторые препараты повреждают и те ткани, где этот индекс невелик (печень, почки), а также зрелые лимфоциты. Хотя алкилированию подвергаются и покоящиеся клетки, цитотоксичность резко усиливается, если ДНК по

вреждается во время подготовки клетки к делению. Если системы репарации успевают устранить повреждение ДНК до начала деления, то гибели клетки не происходит.

В отличие от многих других противоопухолевых препаратов апеллирующие средства действуют на клетки во всех периодах клеточного цикла. Тем не менее это действие обычно проявляется при вступлении клетки в период S — клеточный цикл останавливается. На синхронизированной культуре клеток можно выявить, что клетки несколько более чувствительны к хлорэти-ламинам в конце периода G [ и в периоде S, чем в митозе, в периоде G2 и в начале периода G,. Дело в том, что неспаренные нуклеотиды сильнее подвержены алкилированию, чем нуклеотиды в спирализованной ДНК, а во время репликации цепи ДНК на отдельных участках расплетаются.

Механизм гибели клетки при алкилировании ДНК детально не изучен. Показано, что в нормальных клетках костного мозга и слизистой ЖКТ повреждение ДНК вызывает остановку клеточного цикла на границе периодов G) и S, после чего происходит репарация ДНК или, если ДНК повреждена слишком сильно, развивается апоптоз. Эти процессы регулирует белок р53, и при мутации или делеции гена ТР53 опухолевые клетки избегают апоптоза и продолжают пролиферировать (Fisher, 1994; Kas-tan, 1999).

Хотя основной мишенью всех алкилирующих средств служит ДНК (рис. 52.1), следует указать на важные различия между бифункциональными и монофункциональными препаратами. Первые образуют сшивки цепей Д Н К и оказывают главным образом цитотокснческое действие, тогда как вторые (прокарба-зин, темозоломид) метилируют ДНК и наряду с цитотоксичностью обладают резко выраженной мутагенностью и канцеро-генностью. Очевидно, сшивки цепей ДНК более губительны для клетки, чем метилирование отдельных пуриновых оснований с их последующим отщеплением и разрывом цепи ДНК. Метилирование совместимо с жизнью клетки, но оно чревато мутациями, которые, передаваясь дочерним клеткам, могут вызвать злокачественное перерождение.

Большинство клеток способно к репарации ДНК; по-видимому, репарация играет большую роль в низкой чувствительности покоящихся клеток к алкилирующим средствам, в избирательности действия этих средств на различные типы клеток и в развитии устойчивости. Алкилирование одной цепи ДНК обычно устраняется достаточно легко, но сшивка цепей, возникающая, например, при действии хлорэтиламинов, требует более сложных систем репарации. На фоне низких доз этих препаратов клетка может устранить часть сшивок, но при повышении дозы их число резко возрастает, вызывая распад ДН К. Найдены ферменты репарации (Matijasevic et al., 1993), отщепляющие алкильные группы от атома 0-6 гуанина (метилгуанин-ДНК-ме-тилтрансфераза), от атомов N-3 аденина и N-7 гуанина (3-ме-тиладенин-ДНК-гликозилаза). Высокая активность метилгуа-нин-ДНК-метилтрансферазы обеспечивает клетке устойчивость к производным нитрозомочевины и триазенам (Pegg, 1990).

Механизм проникновения алкилирующих средств в клетки-мишени изучен недостаточно. Хлорметин, по-видимому, попадает в клетки опухолей мышей путем активного транспорта, как аналог холина. Мелфалан, будучи аналогом фенилаланина, переносится по меньшей мере двумя системами активного транспорта, в норме переносящими лейцин и другие нейтральные аминокислоты. Липофильные препараты (производные нитрозомочевины, кармустин и ломустин) проникают в клетки путем диффузии.

Механизмы устойчивости. К алкилирующим средствам часто развивается устойчивость; нередко она оказывается перекрестной, но так бывает не всегда, поэтому сочетание различных алкилирующих средств при высокодозной химиотерапии теоретически обосновано. Механизмы устойчивости до конца не ясны, однако ее связывают с развитием в опухолевых клетках специфических биохимических изменений (Tew et al., 2001), включая: 1) снижение активного транспорта препарата (например, хлорметина и мелфалана), 2) увеличение синтеза нуклеофиль-

ных вешеств, прежде всего тиолов (например, глутатиона), которые связывают и инактивируют электрофилъные метаболиты алкилируюших средств, 3) повышение активности ферментов парации ДНК (например, метилгуанин-ДНК-метилтрансферазы, отшепляющей от ДНК алкильные группы после действия производных нитрозомочевины) и 4) ускоренное окисление аль-дегиддегидрогеназой активных метаболитов циклофосфамида в неактивные кето- и карбоксипроизводные (рис. 52.3).

Для преодоления лекарственной устойчивости предложен ряд веществ, включая соединения, истощающие запасы глутатиона (L-бутионинсульфоксимин); тиолы, которые избирательно связывают активные метаболиты алкилирующих средств в здоровых тканях, снижая токсичность (амифостин); ингибиторы метилгуанин-ДНК-метилтрансферазы (О-6-бензипгуанин) и ингибиторы глутатионтрансфераз — ферментов, ускоряющих конъюгацию тиолов с алкилирующими средствами (этакриновая кислота). Хотя все эти вещества активны при некоторых экспериментальных опухолях, их клиническая эффективность пока не доказана. Только О-6-бензилгуанин (в сочетании с карму-стином или прокарбазином) проходит испытания 2-й фазы при злокачественных глиомах (Schilsky et al., 2000).

Побочные эффекты. Алкилирующие средства различаются не только по противоопухолевой активности, но и по характеру и тяжести побочных эффектов. Большинство препаратов сильно угнетают кроветворение, в меньшей степени страдают слизистые. Хлорметин, мелфалан, хлорамбуцил, циклофосфамид и ифосфамид вызывают раннюю нейтропению: число нейтрофи-лов снижается до минимума на 6—10-е сутки и восстанавливается на 14—21-е сутки. Циклофосфамид реже других препаратов вызывает тромбоцитопению. Бусульфан угнетает все ростки кроветворения, прежде всего стволовые клетки, поэтому его назначают перед аллотрансплантацией костного мозга. При лечении бусульфаном возможна стойкая кумулятивная панцитопения, длящаяся месяцами. Кармустин и ломустин вызывают отсроченную тромбоцитопению и нейтропению, которые достигают максимума через 4—6 нед и затем постепенно проходят.

Алкилирующие средства угнетают клеточный и гуморальный иммунитет, поэтому их применяют при аутоиммунных болезнях. На фоне стандартных доз угнетение иммунитета обратимо.

Кроме системы кроветворения алкилирующие средства поражают быстро делящиеся клетки слизистых, вызывая стоматит и слущивание слизистой кишечника. Особенно важную роль поражение слизистой ЖКТ играет при высокодозной химиотерапии с трансплантацией костного мозга, поскольку это осложнение чревато развитием сепсиса. Мелфалан и ТиоТЭФ в меньшей степени действуют на слизистые, чем другие средства. При высокодозной химиотерапии на первый план выходят другие побочные эффекты, чем при назначении стандартных доз (табл. 52.1).

Другие органы поражаются реже, чем костный мозг и слизистые, но возникающие в них изменения могут быть необратимыми и даже вести к смерти. Все алкилирующие средства вызывают пневмосклероз, при высокодозной химиотерапии встречается поражение эндотелия с развитием вено-окклюзивной болезни печени, длительное лечение производными нитрозомочевины чревато почечной недостаточностью, ифосфамид в высоких дозах часто поражает ЦНС, вызывая эпилептические припадки, кому и иногда смерть. Все эти препараты могут стать причиной вторичных лейкозов, особенно прокарбазин (метилирующее средство) и производные нитрозомочевины. При метаболизме циклофосфамида и ифосфамида образуется акролеин, вызывающий поражение почек и тяжелый геморрагический цистит. Предотвратить последний помогает месна (2-меркапто-этансульфонат) — она содержит сульфгидрильную группу и связывает акролеин в моче.

Нестабильные алкилирующие средства — хлорметин и производные нитрозомочевины — обладают сильным кожно-нарывным действием (благодаря чему хлорметин с успехом применяется местно при опухолях кожи, например грибовидном микозе), при длительном использовании вызывают флебит, а

при попадании в ткани — изъязвление. Большинство алкилирующих средств вызывают алопецию.

Поражение ЦНС проявляется тошнотой и рвотой, особенно после в/в введения хлорметина или кармустина. Наиболее ней-ротоксичен ифосфамид: он вызывает угнетение сознания вплоть до комы, эпилептические припадки и паралич. Это объясняют образованием хлорацетальдегида из хлорэтильной группы, связанной с оксазафосфориновым кольцом. Высокие дозы бусульфана также иногда вызывают эпилептические припадки; кроме того, он ускоряет элиминацию противосудорожного препарата фенитоина (гл. 21).

Алкилирующие средства значительно повышают риск вторичных лейкозов. Почти у 5% больных возникает острый мие-лолейкоз, нередко связанный с делециями 5q или 7q или моно-сомией по 5-й или 7-й хромосоме; заболеваемость достигает максимума через 4 года после химиотерапии (Levine and Bloomfield, 1992). Вторичные лейкозы чаще вызывают мелфалан, производные нитрозомочевины и прокарбазин; для циклофосфамида они менее характерны.

Наконец, алкилирующие средства нарушают репродуктивную функцию у мужчин и у женщин, вызывая необратимую азооспермию и аменорею (особенно у женщин в пременопаузе).

Хлорэтиламины

Общие свойства алкилирующих средств, в том числе хло-рэтиламинов, рассмотрены выше, и теперь мы остановимся на отличительных особенностях отдельных препаратов.

Хлорметин

Хлорметин (мехлорэтамина гидрохлорид, мустарген, эм-бихин) — первый хлорэтиламин, нашедший клиническое применение, и самый активный препарат из этой группы.

Фармакокинетика. При соприкосновении с мягкими тканями хлорметин вызывает тяжелые местные реакции, поэтому в большинстве случаев его вводят в/в. В воде и биологических жидкостях он быстро разрушается, взаимодействуя с водой и други-

Таблица 52.1. Основные побочные эффекты высоких доз цитостатиков

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция