Открыть главное меню

SportWiki энциклопедия β

Изменения

Противовирусные средства (препараты)

10 450 байт добавлено, 7 лет назад
История противовирусных средств
== Противовирусные средства ==
{{Шаблон:Наглядная фарма}}
Вирусы состоят в основном из генетического материала (нуклеиновые кислоты, ДНК, на рис. А изображены зеленым цветом), заключенного в оболочку — капсид (синий шестиугольник); чаще всего это двухслойная фосфолипидная мембрана (серое кольцо) со встроенными белками (синие черточки). У вирусов нет собственного обмена веществ, они размножаются за счет пораженной ими клетки-хозяина. Для лечения вирусных заболеваний необходимо ингибировать обменные процессы в инфицированных клетках, которые участвуют в размножении вирусов.
[[Image:Naglydnay_farma236.jpg|250px|thumb|right|А. Размножение вирусов на примере вируса герпеса и действие противовирусных средств]]
Размножение вирусов на примере вируса простого герпеса (Herpes simplex) (А). Вирус простого герпеса содержит двухцепочечную ДНК.
 
1. Вирусная частица прикрепляется (адсорбируется) на поверхности клетки-мишени, при этом гликопротеины оболочки вируса взаимодействуют со специальными структурами клеточной мембраны.
 
2. Оболочка вируса встраивается в клеточную мембрануклетки-мишени и нуклео-капсид (нуклеиновые кислоты + капсид) входит внутрь клетки (проникновение).
 
3. Капсид раскрывается («раздевание вируса») — у вируса герпеса этот процесс происходит на порах ядра — и ДНК вируса проникает в ядро; с этого момента генетический материал вируса может управлять метаболизмом клетки.
 
4а. Синтез нуклеиновых кислот: генетический материал вируса (в данном случае ДНК) многократно реплицируется, далее образуется РНК, необходимая для синтеза белка.
[[Image:Naglydnay_farma237.jpg|250px|thumb|right|Б. Вирусостатики группы антиметаболитов]]
46. Вирусные белки представляют собой ферменты, необходимые для размножения (например, ДНК-полимераза и тимидинки-наза), а также материал для построения капсида или вирусной мембраны (они могут также встраиваться в мембрану клетки).
 
5. Сборка компонентов вирусной частицы.
 
6. Высвобождение дочерних вирусов, которые могут распространяться внутри организма и вне его.
 
Размножение вируса герпеса приводит к гибели клетки-мишени; при этом проявляются симптомы заболевания.
 
'''Защита организма от вирусов''' (А). Организм защищается от размножения вирусов с помощью цитотоксических Т-лимфоцитов, которые узнают клетки, продуцирующие вирусы (по наличию на поверхности клеток индуцированных вирусом белков) и уничтожают их. Кроме того, организм защищается с помощью антител, которые инактивируют вирусные частицы, находящиеся вне клетки. Профилактические противовирусные прививки имеют своей целью активировать механизм специфической иммунной защиты организма.
 
'''Интерфероны (ИНФ)''' представляют собой гликопротеины, высвобождаемые инфицированными вирусом клетками. Интерфероны стимулируют в соседних клетках продукцию антивирусных белков, которые тормозят синтез вирусных белков путем разрушения вирусной РНК или вызывают нарушение трансляции. Действие интерферонов не направлено на определенный вирус. Однако они специфичны в отношении организмов, т. е. для лечения людей нужен человеческий интерферон. Интерфероны получают из лейкоцитов (ИНФ-а), фибробластов (ИНФ- β ) или лимфоцитов (ИНФ-у). Интерфероны применяют для лечения некоторых вирусных заболеваний, злокачественных новообразований и аутоиммунных заболеваний: ИНФ-а — для лечения хронического гепатита С и волосатоклеточного лейкоза, ИНФ- β — для лечения тяжелых форм герпеса и рассеянного склероза.
 
'''Вирусостатические актиметаболиты''' — аналоги нуклеозидов (Б). Нуклеозид (например, тимидин) состоит из основания (тимина) и сахара дезоксирибозы. В антиметаболите один из компонентов имеет аномальную структуру. Аномальный нуклеозид после присоединения трех фосфатных групп блокирует дальнейший синтез ДНК.
 
'''Идоксуридин''' и аналогичные соединения встраиваются в ДНК и повреждают ее. Синтез ДНК человека при этом также нарушается, поэтому данные препараты применяют только местно (например, при герпетическом кератите).
[[Image:Naglydnay_farma238.jpg|250px|thumb|right|А. Активация ацикловира и ингибирование синтеза вирусной ДНК]]
'''Ацикловир''' является самым эффективным препаратом среди вирусостатических антиметаболитов и лучше всех переносится. Ацикловир активируется только в инфицированных клетках, блокируя в них синтез вирусной ДНК.
 
1. Первый этап фосфорилирования осуществляет тимидинкиназа, имеющаяся только у вируса Herpes simplex и Varicella zoster,; две другие фосфатные хруппы переносят клеточные киназы.
 
2. Трифосфат ацикловира как полярное соединение не может проникать через мембраны и накапливается в инфицированной клетке.
[[Image:Naglydnay_farma239.jpg|250px|thumb|right|Б. Ингибитор ДНК-полимеразы Фоскарнет]]
3. Трифосфат ацикловира воспринимается вирусной ДНК-полимеразой в качестве субстрата, происходит ингибирование фермента, а также обрыв цепи вирусной ДНК, так как отсутствует З’-гидроксигруппадезоксирибозы, необходимая для присоединения последующих нуклеотидов. Ацикловир высокоэффективен при тяжелых герпетических инфекциях (например, энцефалите, генерализованной инферкции) и инфекциях, вызванных вирусом Varicella zoster (например, тяжелые формы опоясывающего лишая). В этих случаях ацикловир назначается внутривенно. Препарат может также применяться перорально, однако всасывание происходит не полностью (15-30%). Кроме того, имеются лекарственные формы для местного применения. Ацикловир не действует на ДНК человека, не вызывает угнетения костного мозга. Препарат выводится почками в неизмененном виде.
 
В '''валацикловире''' гидроксильная группа связана эфирной связью с аминокислотой L-валином. Благодаря этому всасывание увеличивается в два раза по сравнению с ацикловиром. В стенке кишечника и в печени остаток валина отщепляется эстеразами, и в результате образуется ацикловир.
[[Image:Naglydnay_farma240.jpg|250px|thumb|right|В. Средства против гриппа ]]
'''Фамцикловир''' — антигерпетическое пролекарство (действующее вещество пенцикловир), обладает хорошей биодоступностью при пероральном применении.
 
'''Ганцикловир''' применяется для инфузионного введения при тяжелых инфекциях, вызванных цитомегаловирусом (относится к группе вирусов герпеса). Механизм действия не связан с тимидинкиназой. Препарат не очень хорошо переносится: нередко наблюдается лейкопения и тромбоцитопения. Вводится инфузионно или перорально в форме валинового эфира (вал ганцикловир).
 
'''Фоскарнет''' представляет собой аналог дифосфата. При встраивании нуклеотида в ДНК отщепляется дифосфатный остаток. Фоскарнет блокирует ДНК-полимеразу, поскольку он конкурирует за места связывания дифосфатных остатков. Показания: системное лечение тяжелой формы цитомегаловирусной инфекции, СПИДа, местное лечение герпетической инфекции.
 
'''Средства против гриппа'''. Амантадин специфически блокирует размножение вируса гриппа А (РНК-вирус, возбудитель истинного гриппа). Вирусы попадают в клетку путем эндоцитоза. Для высвобождения РНК необходимо, чтобы из кислого содержимого эндосом протоны попадали внутрь вируса. Амантадин блокирует канал в вирусной оболочке, через который проходят протоны. Поэтому «раздевание» вируса становится невозможным. Препарат применяется для профилактики, иногда для уменьшения симптомов заболевания. Амантадин является также противопаркинсоническим средством.
 
Ингибиторы нейраминидазы препятствуют высвобождению вирусов гриппа А и В. Вирусная нейраминидаза отщепляет N-ацетилнейраминовую (сиаловую) кислоту от поверхности клетки и таким образом помогает вирусной частице отделиться от клетки-мишени. Занамивир применяется ингаляционно, озелтамивир назначают перорально, так как этот эфир является предшественником действующей формы лекарства. Возможные области применения — лечение и профилактика гриппа.
 
== История противовирусных средств ==
{{Клинфарм3}}
== Противовирусные средства ==  За последние десять лет появилось много новых противовирусных препаратов — большинство из них для борьбы с ВИЧ-инфекцией и ее осложнениями (Hayden, 2000; Balfour, 1999). В настоящей главе собраны сведения о препаратах, применяемых для лечения инфекций, вызванных ДНК- и рНКРНК-содержащими вирусами. Препараты, действующие на ретровирусы, в частности на ВИЧ, рассмотрены отдельно (гл. 51). Многие противовирусные препараты избирательно действуют на один из этапов вирусной инфекции и жизненного цикла вирусов. Здесь же рассматриваются и интерфероны — цитокины, обладающие противовирусным, иммуномодулирующим и антипролиферативным эффектом (см. также гл. 53). Особое внимание уделено препаратам, действующим на герпесвирусы и вирусы гриппа. Обсуждаются также вопросы эффективности противовирусной терапии и устойчивости вирусов. Многие противовирусные препараты являются аналогами пуриновых и пиримидиновых нуклеозидов (применение нуклеозидных аналогов для лечения злокачественных новообразований изложено в гл. 52).
Все вирусы содержат одно- или двухцепочечную РНК или ДНК, заключенную в белковую оболочку — капсид. У некоторых вирусов есть также внешняя оболочка из липопротеидов, на поверхности которой, как и на поверхности капсида, могут располагаться белковые антигены. Большинство вирусов содержат ферменты (или гены для их синтеза), необходимые для репродукции в клетке-хозяине. У вирусов нет собственного обмена веществ, и они используют метаболические пути клетки-хозяина, которой может служить бактерия, клетка растения или животного. Более глубокое изучение жизненного цикла вирусов позволит создать новые противовирусные препараты, действующие на ту или иную его стадию (табл. 50.1). Противовирусные средства должны избирательно подавлять синтез вирусных (но не клеточных) нуклеиновых кислот и белков. В настоящей главе представлены сведения о противовирусной активности, фармакокинетике и клиническом применении отдельных противовирусных препаратов. Те из них, которые прошли клинические испытания и разрешены к применению, перечислены в табл. 50.2.
*Эффективность препарата определяется его концентрацией в клетках, которая должна быть достаточно высокой, чтобы подавить репродукцию вирусов. Например, аналоги нуклеозидов начинают действовать только после их захвата клетками и фосфорилирования, поэтому эффективность лечения зависит от концентрации необходимых ферментов и конкурирующих субстратов, а следовательно, от типа клетки и особенностей ее метаболизма.
*Пробы на чувствительность к противовирусным препаратам in vitro не стандартизованы, и их результат зависит от метода анализа, типа клеток, штамма вируса и лаборатории. Поэтому для большинства противовирусных средств не установлено четких закономерностей между эффективной концентрацией in vitro, концентрацией в крови и других биологических жидкостях и клинической эффективностью. [[Image:Gm50_1.jpg|250px|thumb|right|Рисунок 50.1. Циклы репродукции ДНК- и РНК-содержащих вирусов на примере герпесвирусов (А) и вируса гриппа (Б). Перечеркнутыми стрелками обозначены предполагаемые мишени противовирусных препаратов. Заглавными буквами обозначены вирусные белки. А. Цикл репродукции вируса простого герпеса. Репродукция герпесвирусов включает несколько этапов и регулируется сверхранними, ранними и поздними генами. После проникновения вируса в клетку сначала считываются сверхранние гены. Они кодируют белки, регулирующие свой собственный синтез; с помощью этих белков транскрибируются ранние гены. В свою очередь, ранние гены отвечают за синтез ферментов, участвующих в репликации вирусной ДНК, например тимидинкиназы и ДНК-полимеразы. После репликации ДНК экспрессируются остальные гены герпесвируса (поздние) — они кодируют белки, необходимые для сборки вируса. Б. Цикл репродукции вируса гриппа. Матриксный белок М2 вируса гриппа образует ионный канал, по которому внутрь вируса поступают протоны, запуская раздевание вируса, — при этом от сегментированного рибонуклеопро-теида отделяется белок, а PHК попадает в цитоплазму, а затем — в ядро. Для синтеза вирусной мРНК требуется праймер, который отщепляется от клеточной мРН К и используется затем при транскрипции. Ингибиторы нейраминидазы, занамивир и озельтами-вир, специфически подавляют выход зрелых вирусов из клетки. вДНК — вирусная ДНК, вРНК — вирусная РНК, ДНКп — ДНК-полимсраза, кРНК — комплементарная РНК, РНКп — РНК-полимераза.]]
Таблица 50.2. '''Разрешенные к применению противовирусные препараты'''
При приеме интерферонов внутрь обнаружить их в плазме не удается, а уровень 2',5'-олигоаденилатсинтетазы в лимфоцитах почти не повышается (Wills, 1990). Зато при в/м или п/к введении интерферон а всасывается более чем на 80%. Сывороточная концентрация интерферона а зависит от дозы; через 4—8 ч после введения она достигает максимума, а через 18—36 ч возвращается к исходному уровню. При однократном введении уровень 2',5'-олигоаденилатсинтетазы в лимфоцитах крови (показатель биологической активности интерферона) начинает возрастать через 6 ч и остается выше исходного уровня в течение 4 сут. Через 24 ч после введения интерферона а противовирусная активность лимфоцитов крови становится максимальной, а затем медленно (в течение 6 сут) возвращается к исходному уровню. Всасывание интерферона у при в/м или п/к введении менее постоянно, а сывороточная концентрация интерферона при таком введении невелика, хотя уровень 2',5'-олигоаденилатсинтетазы в лимфоцитах крови может повышаться. Объем распределения интерферона а составляет в среднем 31л. При системном применении низкие концентрации интерферона о обнаруживают в секретах дыхательных путей, СМЖ, водянистой влаге и головном мозге.
Поскольку действие интерферонов длится достаточно долго, то судить о нем на основании обычных фармакокинетических показателей сложно. При в/в введении динамика элиминации интерферона а из плазмы сложна и описывается несколькими экспоненциальными функциями (Bocci, 1992). Т1/2 интерферона а составляет около 40 мин, а рекомбинантных интерферонов Риу — около 4 ч и 30 мин соответственно. Элиминация интерферонов из плазмы зависит от их распределения в организме, захвата клетками и распада, который происходит главным образом в печени и почках. С мочой выводится лишь очень незначительное количество интерферонов. [[Image:Gm50_3.jpg|250px|thumb|right|Рисунок 50.3. Механизмы действия интерферона. Противовирусная активность интерферона обусловлена несколькими механизмами. Связывание интерферона с рецепторами на поверхности клетки запускает синтез ряда белков, которые блокируют различные этапы репродукции вируса (обозначены цифрами). Важнейшее свойство интерферонов — подавление синтеза вирусных белков (механизм 2), однако задействованы и другие механизмы (1,3 и 4). Изучается роль этих механизмов в реализации других функций интерферонов. Обозначения: eIF2a — фактор инициации трансляции eIF2a. Baron et al., 1992.]]
Присоединение к интерферонам инертного полимера поли-этиленгликоля значительно замедляет их элиминацию из плазмы. Получаемые при этом интерфероны длительного действия (конъюгированные интерфероны, или пегинтерфероны) можно вводить всего 1 раз в неделю. Кроме того, присоединение полиэтиленгликоля снижает иммуногенность белковых препаратов. С ростом молекулярной массы полиэтиленгликоля возрастает Т1/2 препарата, уменьшаются его почечный клиренс и относительная противовирусная активность. В крупных клинических испытаниях изучена эффективность двух конъюгированных интерферонов. Пегинтерферон а-2Ь получен присоединением к интерферону а-2Ь линейной молекулы полиэтиленгликоля с молекулярной массой 12000. Т1/2 такого препарата увеличен с 2—3до54ч (Glueetal., 2000). Пегинтерферона-2а содержит эфир разветвленного полиэтиленгликоля с молекулярной массой 40 000; его Т1/2 еще выше — в среднем 77 ч. Около 70% пегинтерферона а-2Ь и большая часть пегинтерферона а-2а элиминируются путем печеночного метаболизма. Побочные эффекты. Через несколько часов после введения интерферонов (в дозе 1—2 млн МЕ и больше) часто возникает гриппоподобный синдром с лихорадкой, ознобом, головной болью, миалгией, артралгией, тошнотой, рвотой и поносом (Dus-heiko, 1997). Лихорадка обычно длится не более 12 ч, при приеме жаропонижающих препаратов перед введением интерферона она выражена слабее. В большинстве случаев со временем переносимость интерферона улучшается. Гриппоподобное состояние, неприятные ощущения в месте инъекции и лейкопения возникали почти у половины больных с остроконечными кондиломами при введении интерферона в кондилому.
==== Строение и противовирусная активность ====
Рибавирин, или 1-/3-D-рибофуранозил-1Н-1,2,4-триазол-3-карбоксамид, — это синтетический аналог пуриновых нуклеозидов, в котором модифицированы азотистое основание и остаток D-рибозы. Его структурная формула следующая:[[Image:Gm1032.jpg|250px|thumb|right|Структурная формула рибавирина]]
Рибавирин подавляет репродукцию многих РНК- иДНК-содержаших вирусов, в том числе ортомиксовирусов, парамиксовирусов, аренавирусов, буньявирусов, флавивирусов, герпес-вирусов, аденовирусов, поксвирусов и ретровирусов (Gilbert [and Knight, 1986; Huggins, 1989). In vitro на вирусы гриппа, парагриппа и респираторный синцитиальный вирус рибавирин действует в концентрациях 3—10 мкг/мл. Он обратимо подавляет синтез нуклеиновых кислот и пролиферацию неинфицированных клеток, угнетает иммунный ответ (Heagy et al., 1991) и нарушает выработку цитокинов in vitro.
*[[Препараты для лечения гриппа]]
*[[Препараты для лечения ВИЧ-инфекции]]
*[[Лечение вирусных заболеваний]]
Анонимный участник

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция