Открыть главное меню

SportWiki энциклопедия β

Изменения

Нет описания правки
Хотя кофеин обладает многими эффектами в организме, основным механизмом считается его конкуренция с аденозином в местах связывания с соответствующими рецепторами (L.L.Spriet, M.J.Gibala, 2004; B.Sokmen и соавт., 2008). В частности, за счет блокады центральных и периферических аденозиновых рецепторов и торможения активности фосфодиэстераз, способствует накоплению цАМФ и цГМФ. Ингибирует фосфодиэстеразу цАМФ (не только в ЦНС, но и в [[сердце]], гладкомышечных органах, жировой ткани, скелетных мышцах). Стабилизирует передачу в дофаминергических синапсах (психостимулирующие свойства), [[Адренергический синапс|бета-адренергических синапсах]] гипоталамуса и продолговатого мозга (повышение тонуса сосудодвигательного центра), [[Холинергические рецепторы и синапсы|холинергических синапсах]] коры (активация корковых функций) и продолговатого мозга (возбуждение дыхательного центра), норадренергических синапсах (усиление физической активности, анорексия). Таким образом, эффекты кофеина, в первую очередь, нейрональные и локализованы в ЦНС, что важно понимать при дальнейшей оценке его эргогенных свойств. К собственным механизмам действия кофеина добавляются и эффекты теофиллина и параксантина, как его метаболитов, на ЦНС (B.B.Fredholm и соавт., 1999). Кроме влияния на ЦНС, кофеин в процессе физических нагрузок способствует утилизации питательных субстратов. В частности, смещает упор с накопления гликогена на повышение мобилизации свободных жирных кислот (Essig D. И соавт., 1980; L.L.Spriet и соавт., 1992). Усиливается внутримышечное окисление жиров при циклических нагрузках. Правда такие метаболические эффекты кофеина проявляются только в средних и высоких дозах – 5-9 мг/кг (350-630 мг на спортсмена весом 70 кг), по сравнению с диапазоном психотропных доз. Еще одним механизмом потенциального эргогенного влияния кофеина может быть наблюдаемое в процессе физических нагрузок повышение выносливости за счет увеличение выделения бета-эндорфинов. Так, D.Laurent и соавторы (2000) показали, что прием кофеина в дозе 6 мг/кг увеличивает концентрацию в плазме бата-эндорфинов после 2-х часового теста на велотренажере на уровне пика потребления 65% VO2. Известно, что повышенное выделение в организме бета-эндорфинов при физических нагрузках за счет своего анальгетического эффекта способно снижать болевую чувствительность (A.Grossman, J.R.Sutton, 1985).
==== Повышение нейромышечных функций под влиянием кофеина ====
Исследования показали способность кофеина усиливать нейромышечную передачу и/или сократительную способность скелетной мускулатуры (J.M.Lopes и соавт., 1983; J.M.Kalmar, E.Cafarelli, 1999). В частности, J.M.Kalmar и Е.Cafarelli (1999) выявили под действием средней дозы кофеина (6 мг/кг) достоверное увеличение изометрической силы разгибания ног, а также времени развития усталости в процессе субмаксимального изометрического разгибания ног. Потребление кофеина вызывает отчетливый термогенный ответ в дозе 100 мг даже у лиц, которые ежедневно потребляют в обычной жизни от 100 до 200 мг кофеина (A.Astrup и соавт., 1990). Увеличение расхода энергии после приема кофеина не возвращается к исходным значениям в течение 3-х часов. Эти данные указывают на наличие в суммарном действии кофеина двух компонентов – центрального и периферического. Теоретически, кофеин может действовать на ЦНС как антагонист аденозина, а на периферии – как метаболический субстрат и корректор нейро-мышечной функции. Положительное действие кофеина на физическую готовность спортсменов не статично, и зависит от ряда факторов, включая (но не ограничиваясь) исходное состояние организма, уровень физических нагрузок, время дня, характер диеты и примененных параллельно других добавок, дозы кофеина и т.д.
==== Психотропные эффекты кофеина в спорте ====
Влияние кофеина на когнитивные функции спортсменов изучались в различных видах спорта, включающие высокоинтенсивные нагрузки в командных видах, силовые дисциплины и виды, требующие выносливости, точности выполнения поставленных задач, включая военную подготовку частей особого назначения (таблица 4).
'''Таблица 4. Влияние кофеина на когнитивные функции спортсменов в различных видах спорта и военнослужащих'''
 
{| class="wikitable"
|-
! Автор исследования, год !! Категория спортсменов, суточная доза кофеина !! Характер физических упражнений !! Основные результаты
|-
| colspan="4" style="text-align: center;" | Аэробные нагрузки
|-
| T.M. McLellan и соавт., 2005a,b; 2007 || Военнослужащие сил специального назначения.
600-800 мг в составе жевательной резинки за час до задания || Выполнение серии задач в течение нескольких дней (включая ночное время): бег 4-6 км; стрельба на точность; рекогносцировка на местности; психомоторные навыки || Повышалась точность стрельбы, улучшалась ориентация на местности, увеличивалось время движения до усталости и скорость бега, полнота выполнения задания
|-
| H.R.Lieberman и соавт., 2002 || Военнослужащие. Капсулы 100, 200 и 300 мг за час до задания || Задания в ночное время с депривацией сна в сочетании со стрессом || Повышалась точность выполнения заданий, память, скорость выбора цели, поддерживалось время реакции. Особенно эффективны дозы 200-300 мг (2,5-4 мг/кг), но без различий между ними. Лучше переносилось лишение сна.
|-
| G.H. Kamimori и соавт., 2014 || Военнослужащие. Капсулы 200 мг за час до задания || Задания в ночное время с депривацией сна (3 дня по 4 часа) || Повышалась точность выполнения заданий, память, скорость и обоснованность выбора, поддерживалось время реакции.
|-
| R.J. Shulder и соавт., 2016 || Студенты (мужчины и женщины), 4 мг/кг || 30-мин тест на велотренажере при 90% VO2, затем тесты когнитивных функций || Нет эффекта
|-
| E.Hogervorst и соавт., 2008 || Тренированные велосипедисты. Батончики 100 мг кофеина (170 мг/день) +45 г углеводов. || 150 мин на велотренажере при 60% VO<sub>2max</sub>, затем 5 мин отдыха, затем велотренажер до истощения при 75% VO<sub>2max</sub> в течение 3-х дней. Прием кофеина все три дня 170 мг/день || Улучшение когнитивных функций и выносливости (увеличение пройденной дистанции, сохранение моторных и когнитивных функций
|-
| colspan="4" style="text-align: center;" | Анаэробные нагрузки
|-
| K.Collomp и соавт., 1992 || Пловцы ||Короткий спринт (менее 90 сек) на велотренажере || Умеренное повышение выносливости
|-
| K.Woolf и соавт., 2008 || Здоровые тренированные лица, 5 мг/кг за час || Отжимания, приседания, Wingate test || Повышение пика мощности, точности и количества выполняемых движений
|-
| M.Glaister и соавт., 2008 || Здоровые мужчины, 5 мг/кг за час || Множественный спринт 12х30 м, интервал 35 с. || Улучшение показателей, повышение концентрации, снижение утомляемости
|-
| K.Collomp и соавт., 1991 || Здоровые лица, 250 мг однократно || Короткий спринт на велотренажере до истощения при 100% VO2 || Умеренное повышение выносливости
|-
| M.J.Crowe и соавт., 2006 || Нетренированные молодые мужчины. Кофеин 6 мг/кг (420 мг/70 кг) || Когнитивные функции спортсменов-любителей в зале (реакция на визуальные стимулы после двух максимальныз 60-сек. велоспринтов || Не было влияния на когнитивные функции и мощность движений
|-
| E.O.Gungor и соавт., 2015 || Нетренированные молодые мужчины, 3 мг/кг/день 10 дней || Wingate анаэробный тест (30 с), оценка общего состояния || Улучшение показателей силы, скорости, общего психологического и физического состояния
|}
 
Основываясь на научных исследованиях, приведенных выше, кофеин обладает отчетливым эргогенным эффектом (категория доказательности «А»), основанном на следующих основных биохимических механизмах: 1) [[гликоген]]-сберегающем действии; 2) увеличении мобилизации жирных кислот; 3) высвобождении катехоламинов; 4) прямым воздействием на мышечные клетки. У военнослужащих, выполняющих специальные операции (включая условия депривации сна), а также тренирующихся лиц с повышенным уровнем [[стресс]]а, кофеин улучшает когнитивные функции, особенно концентрацию и внимание. Диапазон эффективных доз составляет 200-600 мг/день при возможности приема 3 раза в день как однократно, так и курсами 7 дней. Эффект кофеина проявляется через 25-40 минут после приема внутрь, или через 10-15 минут после применения в виде жевательной резинки или защечных таблеток, и продолжается 4-6 часов после первичного приема, и 2-3 часа – после многократного применения. В то же время, недостаточно изученными остаются вопросы эффективности кофеина у спортсменов и нетренированных лиц при кратковременных, но очень интенсивных физических нагрузках.
 
Следует отметить также некоторые особенности: 1) длительность положительного когнитивного действия кофеина у лиц, постоянно потребляющих кофе (или другие кофеин-содержащие напитки) составляет 1-3 часа, в то время как у лиц, не потребляющих постоянно эти напитки - в среднем около 6 часов; 2) эффективность повторных приемов одних и тех же доз кофеина в течение дня, как правило, падает (развитие толерантности), что в краткосрочной перспективе (в пределах дня) может быть компенсировано увеличением дозы; 3) дозы, оказывающие положительное влияние на когнитивные функции, в основном ниже (100-200 мг/день) доз, оказывающих эргогенное воздействие (400-600 мг/день); 4) в низких и средних дозах эффективность кофеина в большей степени проявляется в отношении аэробных нагрузок.
 
Достаточно точная оценка места и роли кофеина в медицине в целом, и в спорте, в частности, дана в обзорной статье K.Rutherfurd-Markwick и A.Ali (2016) «Использование кофеина в 21 веке». Ниже приводится выдержка из таблицы, включенной в эту статью.
 
'''Таблица 5 (фрагмент, касающийся спорта): Кофеин в спортивной медицине''' (K.Rutherfurd-Markwick, A.Ali, 2016)
 
{| class="wikitable"
|-
! Показатель !! Характеристика работы !! Основные результаты
|-
| Когнитивные функции<br />Уровень навыков || 9003 мужчины и женщины Великобритании<br />12 мужчин-футболистов, Новая Зеландия<br />15 мужчин-футболистов, Новая Зеландия || ↑когнитивных функций<br />↑аккуратности паса ↑показателей прыжковой активности<br />↑аккуратности паса ↑показателей прыжковой активности
|-
| Изменение субъективных ощущения || 10 женщин, командные виды спорта, Новая Зеландия<br />15 мужчин-футболистов, Новая Зеландия || ↑уровня удовлетворенности от тренировок<br />↑уровня удовлетворенности от тренировок
|-
| Эргогенные эффекты || Обзор 28 исследований во многих странах мира<br />10 мужчин, Канада<br />
14 тренированных бегунов, Великобритания<br />35 мужчин-велосипедистов, США || Высокий эргогенный эффект от приема кофеина как в отношении выносливости, так и показателей короткотекущих высоко-
интенсивных тренировок (спринт)<br />↑времени переносимых нагрузок до истощения<br />Отчетливый эргогенный эффект<br />Отчетливый эргогенный эффект
|}
==== Оценка применения кофеина в различных видах спорта в «полевых» условиях ====
Большинство работ по анализу действия кофеина и составов на его основе выполнено в лабораторных условиях (несмотря на максимальные усилия адаптировать традиционные тесты к условиям конкретных видов спорта). Достаточно сложно оценивать изменения, вызванные конкретным БАДом, применительно к отдельным видам спорта с их разными нагрузочными характеристиками, индивидуальными особенностями отдельных спортсменов и т.д. Попытки такого анализа осуществлены в систематическом обзоре A.G.Moreno (2016) на основе баз данных Medline, Scopus и Sport Discus за последние несколько лет, и обзоре L.L.Spriet (2014). Данные их обзоров сведены в таблицу 6.
 
'''Таблица 6. Исследование кофеина в разных видах спорта в «полевых» условиях'''
 
{| class="wikitable"
|-
! Автор, год !! Краткое содержание работы
|-
| colspan="2" style="text-align: center;" | Легкая атлетика, бег
|-
| Bridge C.A., Jones M.A., 2006 || Кофеин 3 мг/кг за час до старта на дистанции 8 км у хорошо тренированных бегунов во время соревнования. Улучшение времени прохождения дистанции в среднем на 24 секунды по сравнению с контрольной группой бегунов (плацебо).
|-
| Van Nieuwenhoven M.A. и соавт., 2005 Кофеин 1,3 мг/кг (около 90 мг) в составе энергетического напитка. 150 мл напитка (150 мг кофеина на 1 литр) до старта, после 4,5 км, 9 км и 13 км (четыре дозы). Дистанция 18 км. Таким образом, низкие дозы (менее 3 мг/кг) неэффективны.
|-
| colspan="2" style="text-align: center;" | Легкая атлетика, толкание ядра
|-
| D.M.Bellar и соавт., 2010 Рандомизированное, двойное-слепое перекрестное исследование во время ранней утренней тренировочной сессии. Толкатели ядра-любители (студенты). Низкие дозы кофеина 100 мг в составе жевательной резинки в расчете на 6 стандартных подходов за 20 минут до начала серии (жевание в течение 5-и минут). Кофеин достоверно увеличивал дальность бросков, показатели психомоторной активности по ряду тестов.
|-
| colspan="2" style="text-align: center;" | Плавание
|-
| T.J.Vandenbogaerde, W.G.Hopkins, 2010 9 элитных пловцов во время утренних и вечерних тренировок. 100 мг кофеина за 75 минут до начала сессии. Эффективность кофеина в улучшении показателей была достоверной, причем выше после обеда по сравнению с утром.
|-
| colspan="2" style="text-align: center;" | Велосипедный спорт
|-
| H. Bortolotti и соавт., 2014 Рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование у 13 велосипедистов. Кофеин 6 мг/кг за 60 минут до гонки на 20 км. Электромиография квадрицепсов, сердечный ритм, опросники до и после физической нагрузки. Значительное увеличение скорости и мощности на последних 2 км дистанции. Средние показатели по всему тесту не изменялись.
|-
| colspan="2" style="text-align: center;" | Гребля*
|-
| A.T.Scott и соавт., 2015 Одиночное слепое перекрестное исследование у хорошо тренированных гребцов (n=13). 100 мг кофеина в изотоническом углеводном геле за 10 мин до теста. Дистанция 2 км. Каждые 200 м регистрировались: сердечный ритм, потребление кислорода, продукция СО2, показатели вентиляции, субъективные ощущения. Достоверное улучшение времени прохождения дистанции под действием кофеина (в среднем на 5 сек).
|-
| A.J.Carr и соавт., 2011 Рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование у 8 хорошо тренированных гребцов. Два базовых теста 4х2000 м. Состав смеси: кофеин 6 мг/кг + бикарбонат натрия за 30 мин до теста. Достоверное, но небольшое (2%) улучшение времени прохождения дистанции.
|-
| colspan="2" style="text-align: center;" | Бадминтон
|-
| P.Abian и соавт., 2015 Рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование у 16 элитных игроков в бадминтон (мужчин). Кофеин 3 мг/кг в составе энергетического напитка за 60 мин до тестирования (матч длительностью 45 минут). Под действием кофеина увеличивалось общее количество ударов за матч, высота всех видов прыжков (в среднем на 7-9%), максимальная мощность.
|-
| N.D. Clarke, M.J. Duncan, 2016 Рандомизированное двойное-слепое плацебо-контролируемое исследование у 12 бадминтонистов-мужчин. Специфические тесты на точность в бадминтоне, времени реакции, правильность выбора за 60 мин до тренировки. Серия р-ров: 1) 7 мл/кг веса воды (PLA); 2) 6,4% р-р углеводов (CHO); 3) р-р кофеина 4 мг/кг; 4) р-р кофеина 4 мг/кг в 6,4% р-ре углеводов. Продолжительность нагрузки 33 мин (протокол), в процессе дополнительное употребление р-ров 3 мл/кг веса. Краткосрочные показатели точности (аккуратности) повышались при приеме углеводов и их комбинации с кофеином. Долгосрочная точность (аккуратность) повышалась (сохранялась) только при приеме углеводов вместе с кофеином. Время реакции укорачивалось примерно одинаково во всех группах, исключая плацебо. Комбинация кофеин+углеводы до и во время матча – эффективная смесь для повышения точности движений и сохране-ния скорости реакции.
|-
| colspan="2" style="text-align: center;" | Теннис*
|-
| C.Gallo-Salazar и соавт., 2015 Одиночное-слепое перекрестное исследование у элитных теннисистов-юниоров, прием кофеина 3 мг/кг в составе энергетического напитка за 60 мин до тестирования. Стандартные лабораторные тесты на силу, скорость (спринт), время реакции, а также имитация фрагмента матча (3 сета). Под влиянием кофеина увеличение силовых показателей составило 4,2%, скоростных параметров - до 30-40%, количества рывков - до 10%, что свидетельствует об эффективности кофеина в отношении целого ряда показателей физической готовности.
|-
| D.J.Hornery и соавт., 2007 Лабораторная имитация матча. Кофеин в капсулах и в составе энергетического напитка 3 мг/кг за 30 мин до игры (2 часа и 40 мин) с машиной, подающей мячи. В ходе матча в контрольной группе игровая способность снижалась, но превентивный прием кофеина уменьшал усталость, сохранял скорость и подвижность во второй половине и, особенно, в конце матча. Таким образом, малые дозы кофеина в теннисе достаточны для повышения тренировочной и соревновательной готовности.
|-
| colspan="2" style="text-align: center;" | Дзюдо
|-
| J.P.Lopes-Silva и соавт., 2014 Восстановление у дзюдоистов после 5- дневной направленной потери веса. После 4-х часовой регидратации и обеспечения макронутриентами – кофеин 6 мг/кг на 3-ем часе. Затем оценка специфического показателя для дзюдо - кол-во бросков, а также лактата крови. Кофеин способен редуцировать чувство усталости и ускорять анаэробный метаболизм, но не влияет на специфические навыки в дзюдо. Поскольку не оценивалось влияние кофеина на когнитивные функции, авторы пока не имеют оснований рекомендовать кофеин как добавку в этом виде спорта.
|-
| colspan="2" style="text-align: center;" | Тхэквондо
|-
| V.G.F. Santos и соавт., 2014 Два боя по 20 мин. Кофеин 5 мг/кг. Выполнение пяти тестовых ударов с оценкой времени реакции бойцов до и после первого боя, а также после второго боя. Кофеин укорачивал время реакции до и во время первых двух раундов первого боя. Во время второго боя эффекта уже не было. Кофеин также снижал утомляемость во время и после второго боя.
|-
| colspan="2" style="text-align: center;" | Фехтование
|-
| L.M.Bottoms и соавт., 2011 11 хорошо подготовленных фехтовальщиков. 2 раунда тестов на время реакции и специфических фехтовальных навыков: первое тестирование за 30 мин до фехтования, длящегося 60 мин, и второе – по окончанию фехтования. Кофеин 3 мг/кг или плацебо во фруктовом соке после первого тестирования. Под влиянием кофеина время реакции не изменялось, но имелась тенденция к снижению количества ошибок, достоверно снижалось утомление, поддержи-вался уровень фехтовальных навыков.
|-
| colspan="2" style="text-align: center;" | Командные виды спорта
|-
| colspan="2" style="text-align: center;" | Регби
|-
| G.R. Stuart и соавт., 2005 Рандомизированное двойное-слепое плацебо-контролируемое исследование у 9 профессиональных игроков в регби. Тесты физической готовности и специальных навыков в регби. Прием кофеина 6 мг/кг за 70 мин до тестирования. Кофеин достоверно увеличивал скорость спринта (около 2%), мощность движений (3-6%), аккуратность пасов (на 6%), а также снижал усталость в конечной фазе тестирования.
|-
| J.Del Coso и соавт., 2013a 16 спортсменок из испанской национальной команды по регби. Кофеин 3 мг/кг в составе энергетического напитка за 60 мин до выполнения специальных тестов: 15 сек максимальных прыжков, 6х30 м спринт, затем игра три гейма против другой национальной команды. Изучалась также концентрация кофеина в моче до и после игры. Кофеин увеличивал мышечную мощность на 9-10%, среднюю скорость бега во время игры (87,5 ± 8.3 vs 95,4±12.7 м/мин в контроле, P<0.05) и во время спринт-теста (4,6±3,3 vs 6,1±3,4 м/мин в контроле, P<0.05). Концентрация кофеина в моче возрастала до 3-4 мкг/мл. Кофеин эффективен в повышении физической готовности в регби у женщин.
|-
| J.Del Coso и соавт., 2013b Рандомизированное исследование у 26 элитных игроков в регби. Кофеин 3 мг/кг в составе энергетического напитка за 60 мин до игры (два полных тайма). В ходе матча определялась пройденная дистанция, индивидуальные беговые характеристики, скорость и частота рывков с помощью специального оборудования (глобальная система слежения). Кофеин увеличивал общую пройденную дистанцию на 7-9%, количество спринтов на 18-20%, число столкновений на 16-17%. Концентрация кофеина возрастала до 2,5 мкг/мл.
|-
| colspan="2" style="text-align: center;" | Волейбол
|-
| A.Pérez-López и соавт., 2015 Рандомизированное двойное-слепое исследование у 13 волейболисток. Кофеин 3 мг/кг в составе энергетического напитка против плацебо-напитка того же состава без кофеина за 60 мин до исследования. Специальные волейбольные тесты: удары стоя, удары в прыжке, блокирующие прыжки, прыжок в определенную площадь и др. Ручная динамометрияманометрия и тест на ловкость. Велась видеозапись и протоколирование. Под влиянием кофеина (по сравнению с плацебо) увеличивалась скорость полета мяча после ударов стоя и в прыжке, высота прыжков во всех вариантах, включая нападение и блокировки. Более того, кофеин снижал время выполнения теста на ловкость. В процессе игры действия волейболисток, характеризуемые как успешные, возникали с большей частотой (45% по сравнению с 34% при плацебо), в то время как неточные действия возникали реже (14% против 28% у плацебо). Таким образом, кофеин в дозе 3 мг/кг значительно улучшает параметры физической готовности в волейболе.
|-
| colspan="2" style="text-align: center;" | Футбол
|-
| J.Del Coso и соавт., 2012 19 полупрофессиональных футболистов. Прием 630 мл энергетического напитка (Red Bull® без сахара) из расчета 3 мг/кг кофеина за 60 мин до тестирования. Тесты: 15 сек максимальный прыжковый тест; повторный спринт (7×30 м; 30 сек активное восстановление); затем игра в футбол. Кофеин увеличивал высоту прыжков на 2-3%, скорость бега на 4-5% и общую протяженность пройденной дистанции за игру на 15-17%, количество рывков за игру на 18-20%. Концентрация кофеина в моче повышалась до 4 мкг/мл.
|-
| A.Foskett и соавт., 2009 Рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование у 12 футболистов-мужчин в процессе 90-минутной игры (дважды с интервалом 7 дней). Кофеин 6 мг/кг за 60 мин до игры. Кофеин повышает аккуратность передач (пасов), контроля мяча и прыжковые показатели, без изменения других параметров физической готовности.
|-
| N.Gant и соавт., 2010 15 футболистов, две 90-минутные игры. Углеводно-электролитный р-р для регидратации (углеводы 1,8 г/кг) или он же с кофеином (3,7 мг/кг) за один час до игры и каждые 15 минут во время игры для регидратации. Оценивались: точность пасов, высота прыжков, скорость спринта, сердечный ритм, концентрация лактата крови, субъективные ощущения участников исследования. Кофеин укорачивал время спринта, особенно в конце нагрузок, увеличивал мышечную мощность, повышал частоту сердечных сокращений и чувство удовлетворения тренировкой. Не отмечено различий в группах в уровне специальных навыков, лактата крови или потери массы тела в процессе физических нагрузок. Кофеин целесообразно включать в состав регидратирующих напитков в футболе для придания им дополнительных эргогенных свойств.
|-
| colspan="2" style="text-align: center;" | Хоккей
|-
| M.J.Duncan и соавт., 2012 13 хоккеистов-мужчин (средний возраст 21 год). Тесты хоккейный скоростной дриблинг и владение шайбой. Исследование влияния приема кофеина на специфические хоккейные навыки в условиях развития выраженной усталости. Тесты проводились до и после интенсивной нагрузки, приводящей к усталости (90% от максимальных возможностей). Кофеин оказался эффективен для сохранения специфических хоккейных навыков в условиях усталости, поддержания физических и ментальных функций хоккеистов.
|}
''Примечания:'' * - прямых данных о применении кофеина в полевых условиях нет, но лабораторные данные получены при моделировании ситуации, приближенной к таковым.
 
==== Сочетание кофеина с углеводами ====
Наряду с прямым центральным эргогенным эффектом, кофеин способен усиливать липолиз и снижать процесс утилизации гликогена, оказывая опосредованное метаболическое эргогенное действие. Как показали исследования у тренированных велосипедистов (J.L.Ivy и соавт.,1979), кофеин в дозах 250 мг и 500 мг за час до физической нагрузки увеличивает объем выполняемой работы на 7,4%.по сравнению с контролем, и на 5,3% - по сравнению с глюкозой. Хорошо известны положительные эффекты самой глюкозы и других «быстрых» углеводов как энергетических субстратов в плане обеспечения потребностей организма при всех видах физических нагрузок. Однако работы по сочетанному применению кофеина и углеводов на сегодняшний день не дали весомых доказательств синергичности в плане повышения физической готовности спортсменов.
N.Martinez и соавторы (2016) в своей работе отмечают, что использование предтренировочных комплексов как в развлекательных, так и в конкурентных видах спорта, в последние годы растет драматическими темпами. Примерно 70% молодых взрослых людей по крайней мере один раз пробовали такие комплексы, а 30% потребляют их на регулярной основе. В их собственной работе исследовались эффекты однократного (острого) применения кофеин-содержащего пред-тренировочного комплекса на показатели физической готовности, включая анаэробную мощность, мощность верхних и нижних мышечных групп, общую силу у мужчин, тренирующихся для своего удовольствия. В исследовании приняло участие 13 мужчин (средний возраст 24 года, рост 180 см, масса тела 80-90 кг). Состав комплекса: 1 ложка 14,5 г содержала 10 ккал, 3 г углеводов, 0% жира, 2 г бета-аланина, экстракт свеклы 1,5 г, ВСАА+нитраты 2 г, кофеин из расчета 4 мг/кг и др. Авторы доказали, что пред-тренировочный комплекс достоверно повышает анаэробный пик и среднюю анаэробную мощность по сравнению с плацебо и исходными показателями. Однако, эти данные не дают никакой ясности, за счет чего именно улучшаются показатели физической готовности.
 
==== Контроль за применением кофеина и кофеин-содержащих составов в спорте ====
Отправной точкой для необходимости определенной регламентации применения кофеина в спорте является его доказанная способность в виде пищевых добавок (во всех формах) в диапазоне доз 3-6 мг/кг достоверно повышать как выносливость, так и способность тренированными спортсменами переносить интенсивные физические нагрузки. Международный Олимпийский Комитет (МОК) ввел лимит на содержание кофеина в моче спортсменов на уровне 12 мкг/мл (Spriet L.L., 1995; T.E.Graham, 2001). Доза кофеина в диапазоне 9-13 мг/кг примерно за один час до выступления будет давать предельно допустимую для соревнований концентрацию кофеина (T.E.Graham, 2001). Прием кофеина и концентрация его в моче зависят от ряда факторов, таких как пол и вес тела (L. Ellender, M.M.Linder, 2005). Поэтому потребление 6-8 чашек хорошо сваренного кофе с содержанием кофеина примерно 100 мг на чашку создает в моче предельную (на грани) концентрацию кофеина (L.L.Spriet, 1995; Ellender, M.M.Linder, 2005). С точки зрения Национальной Ассоциации студенческого спорта США (National Collegiate Athletic Association, USA) превышение концентрации метаболитов кофеина более 15 мкг/мл расценивается как незаконное применение кофеина (The National Collegiate Athletic Association. http://www.ncaa.org, 2009-10 NCAA banned drugs). Кроме того, как уже отмечалось выше в данном разделе, WADA не рассматривает в настоящее время кофеин в качестве запрещенного вещества (см список запрещенных веществ WADA за 2017 год), но вместо этого включило кофеин в специальную программу мониторинга для выявления параметров применения кофеина спортсменами и возможных злоупотреблений в процессе соревнований. Очень интересны результаты выборочного контроля употребления кофеина спортсменами, проведенного сразу после выведения кофеина из стоп-листа WADA (2004 год) (J.Del Coso и соавт., 2011). Исследовательская группа изучила концентрации кофеина в 20 686 образцах мочи с пунктов допинг-контроля на официальных национальных и международных соревнованиях за период с 2004 по 2008 год. Кофеин обнаружен у 73,8% обследованных участников. В большинстве проб (67.3%) содержание кофеина было ниже 5 мкг/мл. Превышение установленной «красной черты» в 12 мкг/мл отмечено только в 0,6% проб мочи. «Лидерами» рейтинга высокого содержания кофеина стали триатлонисты (первое место), велосипедисты (второе место) и гребцы (третье место). Самыми низкими уровнями кофеина отметились гимнасты. Отмечена возрастная тенденция: спортсмены старше 30 лет имели более высокие концентрации кофеина. Между мужчинами и женщинами различий не обнаружено. Таким образом, признаков злоупотребления кофеином не выявлено.
== Позиция Международного Общества Спортивного Питания (ISSN) по кофеину ==
На сегодняшний день считается, что полифенолы обладают хорошим потенциалом в плане улучшения когнитивных функций (память, обучаемость и т.д.). Большинство работ затрагивает вопросы снижения мнестических и иных функций ЦНС в процессе старения. Тем не менее, накоплен определенный материал по отдельным представителям полифенолов в спортивной медицине.
 
=== Кверцетин (Quercetin) ===
[[Image:Neirostimulyatori_Ris_15.jpg|250px|thumb|right|Рис.15. Изменение концентрации кверцетина в плазме крови (мкг/л, ось ординат) после приема кверцетина в дозе 1000 мг/день в течение 2-х недель (темные столбики: pre – до приема БАДа, post – после приема) и плацебо (светлые столбики: pre – до плацебо, post – после). 2-wk – двухнедельный «отмывочный» период между курсами кверцетина и плацебо для одних и тех же участников исследования. Из D.C.Nieman и соавт., 2010.]]
: ''Читайте основную статью:'' [[Кверцетин]]
 
D.C.Nieman и соавторы (2010) в рандомизированном двойном-слепом плацебо-контролируемом перекрестном исследовании у молодых нетренированных мужчин показали, что двухнедельный прием кверцетина в дозе 1000 мг/день, в отличие от плацебо, вызывает небольшое, но достоверное улучшение показателей в 12-минутном беговом тесте (целевой показатель – преодоление максимально возможной дистанции), и среднее по величине достоверное возрастание уровней митохондриальной ДНК и мессенджеров РНК четырех генов, связанных с митохондриальным биогенезом (рис.15,16,17).
[[Image:Neirostimulyatori_Ris_16.jpg|250px|thumb|right|Рис.16. Изменения пройденной дистанции (метры, ось ординат) в 12-минутном тесте на беговой дорожке под влиянием кверцетина в дозе 1000 мг/день в течение 2-х недель приема внутрь (левый столбик) или плацебо (правый столбик) по сравнению с исходными показателями. Из D.C.Nieman и соавт., 2010.]]
[[Image:Neirostimulyatori_Ris_17.jpg|250px|thumb|right|Рис.17. Изменения уровней мышечной митохондриальной ДНК (количество копий, ось ординат) в vastus lateralis четырехглавой мышцы бедра после 2-х недельного приема кверцетина в дозе 1000 мг/день (левый столбик) или плацебо (правый столбик) по сравнению с исходными показателями (метод биопсии). Из D.C.Nieman и соавт., 2010.]]
Результаты мышечной биопсии (vastus lateralis четырехглавой мышцы бедра) до и после 2-х недель приема кверцетина) показали, что курсовое назначение кверцетина достоверно увеличивает содержание в мышечных клетках ДНК, связанной с митохондриальным биогенезом. В целом, эффекты кверцетина у человека оказались существенно ниже по количественным параметрам, чем наблюдалось ранее в эксперименте. Авторы связывают это с меньшей биодоступностью кверцетина в организме человека и высказывают предположение, что более эффективным может быть применение изокверцетина, включая его комбинации с другими флавоноидами (C.Manach и соавт., 2005; D.C. Nieman и соавт., 2009).
Ряд работ был посвящен применению кверцетина в составе комбинированных смесей. Так, те же авторы в рандомизированном двойном-слепом плацебо-контролируемом исследовании у 39 тренированных велосипедистов (D.C. Nieman и соавт., 2009) применили комбинацию БАДов с условной аббревиатурой Q-EGCG курсом 2 недели с суточными дозами: 1000 мг кверцетина, 120 мг эпигаллокатехин-3-галлата, 400 мг изокверцетина и 400 мг смеси эйкозапентаеновой (ЕРА) и докозагексаеновой (DHA) кислот. Изучалось влияние Q-EGCG на биохимические показатели спортсменов в тесте 3-х часового интенсивного пробега 3 дня подряд. Двухнедельный ежедневный прием комбинации БАДов увеличивал концентрацию кверцетина в плазме, окислительную активность гранулоцитов, значительно снижал на 3-ий день нагрузок по сравнению с плацебо уровень С-реактивного белка (маркера воспаления), интерлейкина-6 (IL-6) и интерлейкина-10 (IL-10). Редукция маркеров воспаления сохранялась в течение 14 часов после окончания тренировки. Таким образом, у тренированных лиц эффект кверцетина был более выраженным, однако делать окончательный вывод нельзя, поскольку ряд компонентов комбинации при приеме в течение 2-х недель сами по себе могли вызвать положительные изменения в биохимических показателях в ответ на нагрузку (в частности, омега-3 ПНЖК рыбного жира, эпикатехин – см. соответствующие разделы).
Еще одно рандомизированное перекрестное исследование, выполненное той же группой авторов через год (M.Konrad и соавт., 2011), показало, что острое (однократное) применение кверцетина неэффективно. Так, прием бегунами (n=20) кверцетина однократно внутрь в дозе 1000 мг в сочетании с другими компонентами (120 мг эпигаллокатехина-3-галлата, 400 мг изокверцетина, по 400мг EPA и DHA, 1 г витамина С и 40 мг ниацинамида), достоверно повышал содержание кверцетина в плазме крови, но никак не влиял на биохимические показатели посттренировочного воспаления или изменений иммунитета.
Дополнительное подтверждение эффективности именно курсового применения кверцетина в спорте получено в работах J.M.Davis и соавторов (2009a,b; 2010). Авторы считают основой регуляторных механизмов этого вещества влияние на митохондриальный биогенез. Природные флавоноиды, такие как кверцетин и ресвератрол могут увеличивать митохондриальный биогенез через внутриклеточные сигнальные пути, что доказано в доклинических экспериментальных исследования, и, тем самым, повышать выносливость при физических нагрузках (Lagouge et al., 2006; Narkar et al., 2008; Rasbach & Schnellmann, 2008). Существенная роль в действии кверцетина отводится его кофеино-подобному психостимулирующему эффекту. Кверцетин, как и кофеин, является антагонистом аденозин—А1-рецепторов (S.P.Alexander, 2006), и таким образом, потенциально может снижать утомляемость. J.M.Davis и соавторы (2010) в рандомизированном двойном-слепом плацебо-контролируемом перекрестном исследовании показали, что кверцетин при 7-дневном ежедневном приеме внутрь два раза в день по 500 мг, с одной стороны, повышает максимальную аэробную способность, с другой – тормозит развитие утомляемости в процессе пролонгированных тренировок у здоровых нетренированных субъектов. Авторы считают, что полученные данные являются основанием для включения кверцетина в программу подготовки спортсменов и военнослужащих.
Определенную черту под выполненными клиническими исследованиями кверцетина в спорте в плане повышения выносливости подвел систематический обзор и мета-анализ, проведенные J.Kressler и соавторами (2011). Анализ включил 11 работ и 254 участника, а дозы кверцетина составляли преимущественно 1000 мг. В результате эффект кверцетина по влиянию на потребление кислорода и выносливость у тренирующихся лиц был признан достоверным, но небольшим по величине. Таким образом, курсовое применение кверцетина целесообразно в дозах 500-1000 мг/день в сочетании с другими эргогенными добавками продолжительностью от 7 дней.
[[Image:Neirostimulyatori_Ris_18.jpg|250px|thumb|right|Рис.18. Влияние кверцетина на интенсивность гиперальгезии у мышей (ось ординат, в баллах) после плавательного теста в течение 48 часов (время в часах – ось абсцисс). Эффективность нарастает по мере повышения дозы от 1 до 10 мг/кг до практически полного подавления болей.]]
Новые перспективы для применения нейропротективных свойств кверцетина открываются в результате экспериментальных исследований способности этого БАДа тормозить ноцицептивные (болевые) системы спинного мозга и, тем самым, редуцировать интенсивные мышечные боли при физических нагрузках. В экспериментальной работе S.M. Borghi и соавторов (2016) использовалась специальная модель плавательного теста, вызывающая гиперальгезию. Гиперальгезия оценивалась по шкале в баллах. В результате исследования установлено, что интраперитонеальное введение кверцетина в дозах 1,3 и 10 мг/кг веса за 30 минут до плавательного теста, дозо-зависимо и значительно снижает уровень гиперальгезии (рис.18).
[[Image:Neirostimulyatori_Ris_19.jpg|250px|thumb|right|Рис.19. Химическая структура некоторых флавоноидов Гинко Билоба]]
Кверцетин является компонентом достаточно популярных в спортивном питании растительных добавок, таких как Гинко Билоба (Gingko Biloba). В своей позиционной статье, посвященной энергетическим напиткам, Международное Общество Спортивного Питания (ISSN) подтверждает позитивное влияние Гинко Билоба на память и ментальную концентрацию (B.Campbell и соавт., 2013) у лиц старшей возрастной категории и в эксперименте, однако не приводит доказательств для тренирующихся молодых лиц. Кроме того, существующие коммерческие смеси с Гинко Билоба из-за недостаточной строгости по контролю по сравнению с лекарственными препаратами, не рекомендованы Канадской Академией Спорта для применения в качестве стимулятора деятельности мозга (M.S.Koehle и соавт., 2014), т.к. могут содержать запрещенные вещества.
== L-Теанин (L-theanine) ==
: ''Читайте основную статью'' [[L-Тианин (L-Теанин)]]
=== Фармакокинетика L-теанина у человека ===
При приеме L-теанина в диапазоне доз 25-100 мг в составе чая через 10 мин наблюдается дозо-зависимое повышение концентрации вещества в плазме крови (P.C.van der Pijla и соавт., 2010). Максимальная концентрация в плазме достигалась через 50 мин и составила 1-4,4 мг/л соответственно принятой дозе (дозо-зависимость). Период полувыведения составил 65 мин. L-теанин проникает через ГЭБ, создавая пик концентрации в мозге в течение 60-120 мин (D.J.White и соавт., 2016).
 
=== Фармакодинамика L-теанина ===
 
Будучи сходным по химической структуре с глутаматом, L-теанин связывается с определенными типами глутаматных рецепторов при невысоком уровне аффинитета к ним (T.Kakuda и соавт., 2002). При этом угнетается обратный захват глутамата, возрастает уровень ГАМК в мозге и концентрации допамина и глицина в стриатуме (H.Yokogoshi и соавт.,1998). Уровни серотонина глобально снижаются, но увеличиваются в стриатуме, гиппокампе и гипоталамусе. Долгосрочное применение L-теанина в течение 3-4 недель усиливает метаболизм нейромедиаторов в мозге, обеспечивая нейропротективное действие (X.Di и соавт., 2010; T.Kakuda, 2011).
=== Исследования L-теанина как анксиолитического и стресс-протективного средства ===
 
K.Lu и соавторы (2004) в плацебо-контролируемом исследовании применяли дозу L-теанина 200 мг и выявили наличие способности снимать страх и тревогу, сопоставимой по величине алпразоламу - классическому бензодиазепиновому транквилизатору (входит в список запрещенных WADA веществ). K.Kimura и соавторы (2007) сообщили о достоверном снижении субъективного стресса и страха в ответ на когнитивные стимулы под влиянием L-теанина в дозе 200 мг. Сходные результаты были получены и в ряде других работ.
 
В нескольких небольших работах избирательно оценивалось влияние L-теанина на когнитивные функции, но без особого успеха.
 
=== L-теанин в спортивной подготовке ===
Несмотря на вышеописанные эффекты у здоровых лиц, прямых Прямых исследований изолированного применения L-теанина в дозах 50-250 мг/день в плане спортивной подготовки не проводилось (L.Baker, 2013). Таким образом, на сегодняшний день имеются лишь теоретические предпосылки для применения L-теанина в спорте, не подкрепленные клиническими доказательствами. Несмотря на это, L-теанин не только включен в состав многих комплексных смесей для бодибилдеров, но и рекомендован для практического применения рядом спортивных ассоциаций.
== Другие вещества с потенциальным нейротропным действием ==
*[[Препараты витамина D в спортивной медицине: научный обзор]]
{{сп|4=4}}
== Ссылки ==
*Полищук Н.Е., Муравский А.В. Черепно-мозговая травма у боксеров. Обзор литературы. Нейрохирургия, 2009, 3:80-88.
*Abian P., Del Coso J., Salinero J.J. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J.Sports Sci., 2015, 33(10):1042-1050.
*Adibhatla R.M., Hatcher J. F., Dempsey R. J. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke, 2001, 32(10):2376–2381.
*Adibhatla R.M. Citicoline in stroke and TBI clinical trials. Nat Rev Neurol., 2013, 9: 173.
*Agnoli A., Bruno G., Fioravanti M. Therapeutic Approach to Senile Memory Impairment: A Double-Blind Clinical Trial with CDP Choline, Alzheimer’s Disease: Proceedings of the 5th Meeting of the Interna-tional Study Group on the Pharmacology of Memory Disorders Associated with Aging, Birkhauser, Boston, 1989.
*Agut J., Ortiz J., Wurtman R. Cytidine (5')Di- phosphocholine Modulates Dopamine K(+)-Evoked Re-lease in Striatum Measured by Microdialysis,” Annals of the New York Academy of Sciences, 2000, 920: 332- 335.
*Alexander S.P. Flavonoids as antagonists at A1 adenosine receptors. Phytotherapy Research, 2006, 20, 1009–1012.
*Aniruddha T.J., Pillai S., Devi B.I. et al. Role of citicoline in the management of mild head injury. Indian J Neurotrauma, 2009, 6:49-52.
*Astrup A., Toubro S., Cannon S. et al: Caffeine: A double-blind, placebocontrolled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am.J.Clin.Nutr.,1990, 51:759-767.
*Babb S.M. et al. Differential Effect of CDP-Choline on Brain Cytosolic Choline Levels in Younger and Older Subjects as Measured by Proton Magnetic Resonance Spectroscopy, Psychopharmacology, 1996, 127, 2: 88-94.
*Babb S.M. et al. Chronic Citicoline Increases Phos-phodiesters in the Brains of Healthy Older Subjects: An in Vivo Phosphorus Magnetic Resonance Spectroscopy Study, Psychopharmacology, 2002, 161, 3: 248-254.
*Baskaya M.K., Dogan A., Rao A.M., Dempsey, R.J. Neuroprotective effects of citicoline on brain edema and blood-brain barrier breakdown after traumatic brain injury. J. Neurosurg., 2000, 92: 448–452.
*Baugh Ch.M., Stamm J.M., Riley D.O. et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging and Behavior, 2012, DOI 10.1007/s11682-012-9164-5.
*Bellar D.M., Kamimori G., Judge L. et al. Effects of low-dose caffeine supplementation on early morning performance in the standing shot put throw. Eur.J.Sport Sci., 2010, 12(1):57-61.
*Bellar D.М., LeBlanc N.R., Campbell B. The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength. J.Intern.Soc.Sports Nutr., 2015, 12:42-48.
*Blokland A., Honig W., Browns F., Jolles J. Cognition-enhancing properties of subchronic phosphatidylserine (ps) treatment in middle-aged rats: comparision of bovine cortex ps with eggs ps and soybean ps. Nutrition,1999, 15:778-783.
*Borghi S.M., Pinho-Ribeiro F.A., Fattori V. et al. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice. PLOS ONE | DOI:10.1371/journal.pone.0162267 September 1, 2016.
*Bortolotti H., Altimari L.R., Vitor-Costa M., Cyrino E.S. Performance during a 20-km cycling time-trial after caffeine ingestion. J.Int.Soc.Sports Nutr., 2014, 11: 45.
*Bottoms L.M., Sınclaır J., Gabrysz T. et al. Physiological responses and energy expenditure to simulated epee fencing in elite female fencers. Serbian J.Sports Sci., 2011, 5(1): 17-20.
*Bridge C.A., Jones M.A. The effect of caffeine ingestion on 8 km run performance in a field setting. J. Sports Sci., 2006, 24:433–439.
*Brownawell A.M., Carmines E.L., Montesano F. Safety assessment of AGPC as a food ingredient. Food Chem. Toxicol., 2011, 49(6):1303–1315.
*Calatayud Maldonado V., Calatayud Perez J.B., Aso Escario J. Effects of CDP-choline on the recovery of patients with head injury. J. Neurol. Sci., 1991, 103(Suppl.): S15–S18.
*Campbell B., Wilborn C., La Bounty P. et al. International Society of Sports Nutrition position stand: energy drinks. J.Intern.Soc.Sports Nutr., 2013, 10:1-17.
*Cano-Cuenca N., Solís-García del Pozo J., Jordán J. Citicoline efficiency on cognitive function: A systematic review. J Aging Res. Clin. Practice, 2015, 4(4):240-246.
*Carr A.J., Gore C.J., Dawson B. Induced alkalosis and caffeine supplementation: effects on 2,000-m rowing performance. Int.J.Sport Nutr.Exerc.Metab., 2011, 21(5):357-364.
*Clarke N.D., Duncan M.J. Effect of Carbohydrate and Caffeine Ingestion on Badminton Performance. Intern.J.Sports Physiol.Perf., 2016, 11(1): 108-115.
*Cohadon F., Richer E., Poletto B. (). [A precursor of phospholipids in the treatment of severe traumatic comas]. Neurochirurgie, 1982, 28: 287–290.
*Collomp K., Ahmaidi S., Audran M. et al. Effects of caffeine ingestion on performance and anaerobic metabolism during the wingate test. Int.J.Sports Med., 1991, 12:439-443.
*Collomp K., Ahmaidi S., Chatard J.C. et al. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol 1992, 64:377-380.
*Conant R., Schauss A.G. Therapeutic Applications of Citicoline for Stroke and Cognitive Dysfunction in the Elderly: A Review of the Literature, Alternative Medi-cine Review, 2004, 9, 1: 17-31.
*Crowe M.J., Leicht A.S., Spinks W.L. Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int.J.Sport Nutr.Exerc Metab., 2006, 16:528-544.
*Dacaranhe C.D., Terao J. A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers. Lipids, 2001, 36:1105-1110.
*Davalos A., Secades J. Citicoline Preclinical and Clinical Update 2009-2010, Stroke, 2011, 42, 1: S36-S39.
*Davis J.M., J Carlstedt J.C., Chen S. et al. The Dietary Flavonoid Quercetin Increases VO2max and Endurance Capacity. Intern. J.Sport Nutr.Exer.Metab., 2010, 20(1): 56-62.
*Davis J.M., Murphy E.A., Carmichael M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr.Sports Med.Rep., 2009, 8(4):206-213.
*Davis J.M., Murphy E.A., Carmichael M.D., Davis, B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2009b, 296, R1071–R1077.
*Del Coso J., Muñoz G., Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl.Physiol.Nutr. Metab., 2011 36(4):555-561.
*Del Coso J., Muñoz-Fernández V.E., Muñoz G. et al. Effects of a Caffeine-Containing Energy Drink on Simulated Soccer Performance. PLoS One. 2012; 7(2): e31380.
*Del Coso J., Ramirez J.A., Munoz G. et al. Caffeine-containing energy drink improves physical performance ofelite rugby players during a simulated match. Appl. Physiol. Nutr. Metab., 2013, 38: 368–374.
*Del Coso J., Portillo J., Muñoz G. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids, 2013, 44(6):1511-1519.
*De la Cruz J. P., Pavia J., Gonzalez-Correa J. A. et al. Effects of chronic administration of s-adenosyl-l-methionine on brain oxidative stress in rats. Naunyn-Schmiedebergs Archives of Pharmacology, 2000, 361(1):47–52.
*Dempsey R.J., Raghavendra Rao V.L. Cytidinediphosphocholine treatment to decrease traumatic brain injuryinduced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats. J. Neurosurg., 2003, 98: 867–873.
*Di X., Yan J., Zhao Y., et al. L-theanine protects the APP (Swedish mutation) transgenic SH SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience, 2010, 168, 778–786.
*Dixon C.E., Ma X., Marion D.W. Effects of CDPcholine treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetylcholine release. J. Neurotrauma, 1997, 14: 161–169.
*Duncan M.J., Taylor S., Lyons M. The effect of caffeine ingestion on field hockey skill performance following physical fatigue. Res.Sports Med., 2012, 20(1):25-36.
*Ellender L., Linder M.M. Sports pharmacology and ergogenic aids. Prim. are 2005, 32:277-292.
*Erdman J., Oria M., Pillsbury L. Nutrition and Traumatic Brain Injury. Improving Acute and Subacute Health Outcomes in Military Personnel. The National Acad.Press, Washington, 2011.
*Espagno J., Tremoulet M., Gigaud M., Espagno Ch. Etude de l’action de la CDPcholine dans les troubles de la vigilance post-traumatique. La Vie Médicale,1979, 3: 195-196.
*Essig D., Costill D.L., Van Handel P.J. Effects of caffeine ingestion on utilisation of muscle glycogen and lipid during leg ergometer exercise. Int.J.Sports Med., 1980, 1:86-90.
*Fahey T.D., Pearl M.S. The Hormonal and Perceptive effects of phosphatidylserine administrtion during twо weeks of resistive exercise induced overtraining. Biology of sport, 1998,15:136-144.
*Foskett A., Ali A., Gant N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int.J.Sport Nutr.Exerc. Metab., 2009, 19:410-423.
*Fredholm B.B., Battig K., Holmen J., Nehlig A., Zvartau E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol.Rev., 1999, 51:83-133.
*Gallo-Salazar C., Areces F., Abián-Vicén J. Enhancing physical performance in elite junior tennis players with a caffeinated energy drink. Int.J.Sports Physiol.Perform., 2015, 10(3):305-310.
*Gant N., Ali A., Foskett A. The influence of caffeine and carbohydrate co-ingestion on simulated soccer performance. Intern.J. Sport Nutr.Exer.Metab., 2010, 20:191-197.
*Glaister M., Howatson G., Abraham C.S. et al. Caffeine supplementation and multiple sprint running performance. Med.Sci. Sports Exerc., 2008, 40:1835-1840.
*Goldstein E.R., Ziegenfuss T., Kalman D. et al. International society of sports nutrition position stand: caffeine and performance. J.Intern.Soc.Sports Nutr., 2010, 7:5-20.
*Graham T.E. Caffeine and exercise. Metabolism, endurance and performance. Sports Med., 2001, 31:785-807.
*Grossman A., Sutton J.R. Endorphins: What are they? How are they measured? What is their role in exercise?. Med.Sci.Sports Exerc., 1985,17:74-81.
*Gundert-Remy U. Pharmacokinetic and Pharmacodynamic Effects of Caffeine. EFSA Stakeholders Meeting on the safety of caffeine. Brussels, 5 March 2015.
*Gungor E.O., Cerrah A.O., Yilmaz L. Effect of coffee consumption on anaerobic performance. The Swedish J.Sci. Res., ISSN, 2015, 2 (12): 14-17.
*Hirsch M.J., Growdon J.H., Wurtman R.J. Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indices. Metabolism, 1978, 27:953-960.
*Hoffman J.R., Ratamess N.A., Gonzalez A. et al. The effects of acute and prolonged CRAM supplementation on reaction time and subjective measures of focus and alertness in healthy college student. J. Int. Soc. Sport Nutr., 2010,7:39-47.
*Hogervorst E., Bandelow S., Schmitt J. et al. Caffeine improves physical and cognitive performance during exhaustive exercise. Med.Sci.Sports Exerc., 2008, 40:1841-1851.
*Hornery D.J., Farrow D., Mujika I., Young W.B. Caffeine, carbohydrate, and cooling use during prolonged simulated tennis. Int.J.Sports Physiol.Perform., 2007, 2(4):423-438.
*Huynh M.L., Fadok V.A., Henson P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes tgf-β1 secretion and the resolution of inflammation. J.Clin.Invest., 2002, 109:41-50.
*Jäger R., Purpura M., Geiss K-R. et al. The effect of phosphatidylserine on golf performance. J.Intern.Soc.Sports Nutr., 2007, 4:23-28.
*Jajim A.R., Wright G., Schultz K. et al. Effects of acute ingestion of a mult-ingredient pre-workout supplement on lower body power and anaerobic sprint performance. J.Int.Soc.Sport Nutr., 2015, 12 Suppl 1:49.
*Kakuda T., Nozawa A., Sugimoto A., Niino H. Inhibition by theanine of binding of [3H] AMPA, [3H] kainate, and [3H] MDL 105,519 to glutamate receptors. Biosci. Biotechnol. Biochem., 2002, 66, 2683–2686.
*Kakuda T. Neuroprotective effects of theanine and its preventive effects on cognitive dysfunction. Pharmacol. Res., 2011, 64, 162–168.
*Kalmar J.M., Cafarelli E. Effects of caffeine on neuromuscular function. J.Appl.Physiol., 1999, 87:801-808.
*Kamimori G.H., Karyekar C.S., Otterstetter R et al: The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int.J.Pharm., 2002, 234:159-167.
*Kamimori G.H., McLellan T.M., Tate C.M. et al. Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology (Berl), 2015, 21, 232(12):2031-2042.
*Kato-Kataoka A., Sakai M., Ebina R. et al. Soybean-Derived Phosphatidylserine Improves Memory Function of the Elderly Japanese Subjects with Memory Complaints. J. Clin. Biochem. Nutr., 47, 246–255.
*Kimura K., Ozeki M., Juneja L.R., Ohira H. L-theanine reduces psychological and physiological stress responses. Biol. Psychol., 2007, 74, 39–45.
*Kingsley M., Wadsworth D., Kilduff L.P. et al. Effects of phosphatidylserine on oxidative stress following intermittent running. Med.Sci.Sports Exerc., 2005, 37:1300-1306.
*Kingsley M., Miller M., Kilduff L.P., McEneny J. Benton D: Effects of phosphatidylserine on exercise capacity during cycling in active males. Med.Sci.Sports Exerc., 2006, 38:64-71.
*Kingsley M., Kilduff L.P., McEneny J. et al. Phosphatidylserine supplementation and recovery following downhill running. Med.Sci.Sports Exerc., 2006, 38:1617-1625.
*Koehle M.S., Cheng I., Sporer B. Canadian Academy of Sport and Exercise Medicine Position Statement: Athletes at High Altitude. Clin. J. Sport Med., 2014, 24, 2, 120-127.
*Kressler J., Millard-Stafford M., Warren G.L. Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med.Sci.Sports Exerc., 2011, 43(12):2396-2404.
*Krupinski J., Ferrer I., Barrachina M. et al. CDP-choline reduces procaspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat. Neuropharmacology, 2002, 42(6):846–854.
*Lactorraca S., Piersanti P., Tesco G. et al. Effect of phosphatidylserine on free radical susceptibility in human diploid fibroblasts. J.Neural.Transm.Park Dis.Dement.Sect., 1993, 6:73 77.
*Leon-Carrion J., Dominguez-Roldan J.M., Murillo-Cabezas, F. et al. The role of citicoline in neuropsychological training after traumatic brain injury. NeuroRehabilitation, 2000, 14:33–40.
*Levin H.S. (1991). Treatment of postconcussional symptoms with CDP-choline. J. Neurol. Sci., 1991, 103(Suppl.), S39–S42.
*Lieberman H.R., Tharion W.J., Shukitt-Hale B. et al. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during u. S Navy seal training Psychopharmacology 2002, 164:250-261.
*Lin A., Ramadan S., Box, H. et al. Neurochemical changes in athletes with chronic traumatic encephalopathy. Chicago: Radiological Society of North America. 2010.
*Lopes J.M., Aubier M., Jardim J. et al. Effect of caffeine on skeletal muscle function before and after fatigue. J.Appl.Physiol: Respirat Environ.Exer.Physiol., 1983, 54:1303-1305.
*Lopes-Silva J.P., Felippe L.J.C., Silva-Cavalcante M.D. et al. Caffeine Ingestion after Rapid Weight Loss in Judo Athletes Reduces Perceived Effort and Increases Plasma Lactate Concentration without Improving Performance. Nutrients, 2014, 6(7): 2931–2945.
*Lozano R. CDP-choline in the treatment of cranio-encephalic traumata. J. Neurol. Sci., 1991, 103 Suppl: S43-47.
*Lu K., Gray M.A., Oliver C. et al. The acute effects of L-theanine in comparison with alprazolam on anticipatory anxiety in humans. Hum. Psychopharmacol., 2004, 19, 457–465.
*Luo Y., Smith J., Paramasivam V. et al. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA 99? 2002: 12197-12202.
*Manach C., Williamson G., Morand C. et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am.J.Clin.Nutr., 2005, 81(1 suppl):230S-242S.
*Martinez N., Campbell B., Franek M. et al. The effect of acute pre-workout supplementation on power and strength performance. J.Intern.Soc.Sports Nutr., 2016, 13:29-36.
*McGlade E., Locatelli A., Hardy J. et al. Improved Attentional Performance Following Citicoline Administration in Healthy Adult Women. Food and Nutrition Sciences, 2012, 3, 769-773.
*McKee A. C., Cantu R. C., Nowinski C. J. et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J.Neuropathol.Exper. Neurol., 2009, 68(7): 709–735.
*McLellan T.M., Kamimori G.H., Voss D.M. et al. Caffeine maintains vigiliance and improves run times during night operations for special forces. Aviat Space Environ Med 2005a, 76:647-654.
*McLellan T.M., Kamimori G.H., Voss D.M. et al. Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation. Aviat Space Environ Med 2005b, 76:39-45.
*McLellan T.M., Kamimori G.H., Voss D.M. et al. Caffeine effects on physical and cognitive performance during sustained operations. Aviat Space Environ. Med., 2007, 78:871-877.
*Meeusen R. Nutrition and neurogenesis. Sports Science Exchange (2015) 28, 149: 1-5.
*Ozay R. et al. Citicoline Improves Functional Recovery, Promotes Nerve Regeneration, and Reduces Postoperative Scarring after Peripheral Nerve Surgery in Rats. Surg. Neurol., 2007, 68, 6: 615-622.
*Misbach J., Andradi S., Harahap T.P. et al. Doubleblind trial of Nicholin (CDP-choline) on the patients with severe head injury. Biannual Meeting of Neurology, Psychiatry and Neurosurgery, Surabaya (Indonesia). 1978.
*Monteleone P., Beinat L., Tanzillo C. et al. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology, 1990, 52:243-248.
*Nieman D.C., Henson D.A., Maxwell K. et al. Effects of quercetin and EGCG on mitochondrial biogenesis and immunity. Med.Sci.Sports Exerc., 2009, 41(7):1467-1475.
*Nieman D.C., Williams A.S., Shanely R.A. Quercetin's Influence on Exercise Performance and Muscle Mitochondrial Biogenesis. Med.Sci.Sports Exer., 2010, 42(2): 338-345.
*Ogashiwa M., Sano K., Manaka S. et al.) Effectiveness of CDPcholine on disturbance of consciousness (DOC). Novel biochemical, pharmacological and clinical aspects of cytidinediphosphocholine. Elsevier Science Publ Co NY. 1985.
*Omalu B. I., DeKosky S. T., Minster R. L. et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery, 2005, 57: 128–134.
*Parker A.G., Byars A., Purpura M., Jäger R. The effect of alphaglycerylphosphorylcholine, caffeine or placebo on markers of mood, cognitive function, power, speed and agility. J.Int.Soc. Sport Nutr., 2015, 12 Suppl 1:41.
*Parnetti L., Mignini F., Tomassoni D. et al. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective or need for re-evalulation? J.Neuro.Sci., 2007, 257:264–269.
*Pérez-López A., Salinero J.J., Abian-Vicen J. et al. Caffeinated energy drinks improve volleyball performance in elite female players. Med.Sci.Sports Exerc., 2015, 47(4):850-856.
*Potgieter S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clin. Nutr., 2013, 26(1):6-16.
*Raggueneau J.L., Jarrige B. National Survey result in serious head injuries: Analysis of 219 injuries treated with CDP-choline [ National inquiry on the outcome of severe head injuries : analysis of 921 Injured Patients Treated with CDP-choline ]. Agressologie. 1988, 29: 439-443.
*Richer E., Cohadon F. Therapeutic trial of a precursor phospholipids on the treatment of severe traumatic comas. International Symposium: Suffering and cerebral phospholipid precursors Paris. Paris. 1980.
*Ross B.M., Mamalias N., Moszczynska A. et al. Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson’s disease. Neuroscience, 2001, 102: 899–904.
*Rutherfurd-Markwick K., Ali A. Caffeine use in the 21st Century: Considerations for Public Health. Jacobs Journal of Food and Nutrition, Review article, 2016, 3(1):1-10.Scientific Opinion on the substantiation of health claims related to choline and contribution to normal lipid metabolism (ID 3186), maintenance of normal liver function (ID 1501), contribution to normal homocysteine metabolism (ID 3090), maintenance of normal neurological function (ID 1502), contribution to normal cognitive function (ID 1502), and brain and neurological development (ID 1503) pursuant to Article 13(1) of Regulation (EC) No 1924/2006», Parma, Italy. EFSA Journalб 2011б 9(4):2056-2079.*Santos V.G.F., Santos V.R.F., Felippe L.J.C. et al. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo. Nutrients, 2014, 6, 637-649.*Scott A.T., O'Leary T., Walker S., Owen R. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int.J.Sports Physiol.Perform., 2015, 10(4):464-468.
*Secades J.J., Frontera G. CDP-choline: pharmacological and clinical review. Methods Find. Exp. Clin. Pharmacol., 1995, 17(Suppl. B), 1–54.
*Secades J.J., Lorenzo J.L. Citicoline: Pharmacological and Clinical Review, 2006 Update. Methods & Findings in Experimental & Clinical Pharmacology, 2006, 28, Suppl. B: 1-56.
*Smith A.E., Fukuda D.H., Kendall K.L., Stout J.R. The effects of a pre-workout supplement containing caffeine, creatine, and amino acids during three weeks of high-intensity exercise on aerobic and anaerobic performance. J.Intern.Soc.Sports Nutr., 2010, 7:10-21.
*Spriet L.L., MacLean D.A., Dyck D.J. et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am.J.Physiol., 1992, 262:E891-898.
*Spriet L.L. Caffeine and performance. Int.J.Sport Nutr., 1995, 5:S84-99.
*Spriet L.L., Gibala M.J. Nutritional strategies to influence adaptations to training. J.Sports Sci., 2004, 22:127-141.
*Starks M.A., Starks S.L., Kingsley M. et al. The effects of phosphotidylserine on endocrine response to moderate intensity exercise. J. Inter. Soc. Sports Nutr., 2008, 5:11.
*Stuart G.R., Hopkins W.G., Cook C., Cairns S.P. Muliple Effects of Caffeine on Simulated High-intensity Team-Sport Performance. Med.Sci.Sports Exerc., 2005, 37, 11, 1998-2005.
*Teekachunhatean S., Tosri N., Rojanasthien N. Pharmacokinetics of Caffeine following a Single Administration of Coffee Enema versus Oral Coffee Consumption in Healthy Male Subjects. ISRN Pharmacology, 2013, Article ID 147238, 7 pages.
*Traini E., Bramanti V., Amenta F. Choline alphoscerate (alpha-glycerylphosphorylcholine) and old choline-containing phospholipid with a still interesting profile as cognition enhancing agent. Curr Alzheimer Res., 2013,10(10):1070–1079.
*Ulus I.H. et al. Choline Increases Acetylcholine Re-lease and Protects against the Stimulation-Induced De-crease in Phosphatide Levels within Membranes of Rat Corpus Striatum, Brain Research, 1989, 484, 1-2: 217-227.
*Vandenbogaerde T.J., Hopkins W.G. Monitoring acute effects on athletic performance with mixed linear modeling. Med.Sci.Sports Exerc., 2010, 42(7):1339-1344.
*Van der Pijla P.C., Chenb L., Muldera T.P.J. Human disposition of L-theanine in tea or aqueous solution. J.Functional Foods, 2010, 2(4):239-244.
*Van Nieuwenhoven M.A., Brouns F., Kovacs E.M. The effect of two sports drinks and water on GI complaints and performance during an 18 km run. Int. J. Sports Med., 2005, 26:281–285.
*WADA: The world anti-doping code international standard. Prohibited list. Jan. 2017.
*White D.J., de Klerk S., Woods W. et al. Anti-Stress, Behavioural and Magnetoencephalography Effects of an L-Theanine-Based Nutrient Drink: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients, 2016, 8(53):1-19.
*Williams M.H. Dietary Supplements and Sports Performance: Introduction and Vitamins. J. Intern. Soc.Sports Nutr., 2004, 1(2):1-6.
*Woolf K., Bidwell W.K., Carlson A.G. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int.J.Sport Nutr. Exerc.Metab., 2008, 18:412-429.
*Wurtman R.J., Hirsch M.J., Growdon J.H. Lecithin consumption raises serumfree-choline levels. Lancet, 1977, 2:68-69.
*Wurtman R. J., Regan M., Ulus I., Yu L. Effect of Oral CDP-Choline on Plasma Choline and Uridine Levels in Humans. Biochemical Pharmacology, 2000, 60, 7: 989- 992.
*Yokogoshi H., Kobayashi M., Mochizuki M., Terashima T. Effect of theanine, r-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem. Res., 1998, 23, 667–673.
*Zafonte R., Friedewald W.T., Lee S.M. et al. The Citicoline Brain Injury Treatment (COBRIT) Trial: Design and Methods. J.Neurotrauma, 2009, 26:2207–2216.
*Zafonte R.D., Bagiella E., Ansel B.M. et al. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT). JAMA, 2012, 308(19):1993-2000.
1759
правок

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция