Открыть главное меню

SportWiki энциклопедия β

Изменения

Бета-аланин: научный обзор

30 363 байта убрано, 4 года назад
Нет описания правки
'''Авторы''': д.м.н. [[Александр Дмитриев]], врач-эндокринолог [[Участник:Алексей_Калинчев|Алексей Калинчев]]
В последние годы в мире возрос интерес к [[Бета-аланин|бета-Аланин]]у (β-Аланин, β-Alanine, БА) как биологически активной [[Аминокислоты|аминокислоте]], применяемой в качестве фармаконутриента с целью повышения физической готовности как [[Бета-аланин в спорте|спортсменов]], так и обычных лиц, занимающихся физкультурой или подверженных повышенным физическим нагрузкам. В период с 2007 по 2015 год выполнено большое количество исследований у разных категорий лиц: профессиональных спортсменов, военных, обычных тренированных и нетренированных лиц, - для определения эффективности БАбета-аланина, дозировок и схем использования. На основании этих работ сформулированы рекомендации для однократного (острого) и курсового применения БАβ-аланина, сочетания с другими макро-, микро- и фармаконутриентами. В то же время, в отечественной литературе крайне мало работ, посвященных данному вопросу, что затрудняет практическое применение БАβ-аланина. Данный обзор предназначен для восполнения пробела в этом плане и создания основы для будущих российских рекомендаций. 
=== Структура и физико-химические свойства β-Аланина (БА) ===
[[Image:Alanin9.jpg|250px|thumb|right|Структура Beta-Alanine (Бета-Аланин) и dl-Alpha-Alanine (dl-Альфа-Аланин)]]
'''Бета-Аланин''' (''3-аминопропионовая кислота''; ''бета-аминопропионовая кислота''; ''3-Aminopropionic acid''; ''Beta-Aminopropionic acid'') имеет молекулярный вес 89,1 г/моль, чрезвычайно высокую растворимость в воде 545 г/л (при 25оС). Растворимость в воде L-Аланина (альфа-Аланина) при той же температуре - 166 г/л.
Альфа- и бета- Аланин – изомеры, имеют одинаковую формулу '''С3Н7NO2''', но молекулярная структура у них разная. У альфа-Аланина амидная группа прикреплена к центральному углеродному атому, в то время как у бета-Аланина – к концевому углеродному атому. Это обусловливает различные химические свойства. В частности, температура плавления альфа-Аланина – 314оС314°С, бета-Аланина – 196оС196°С.
=== Экзогенное введение β-Аланина и метаболические процессы в организме ===
==== Фармакокинетика ====
В работе R.C.Harris и соавторов <ref name="Harris">Harris R.C., Tallon M.J., Dunnett M. et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30(20063) :279–289.</ref> на 28 здоровых молодых мужчинах (возраст 33,5±9,9 года; вес 80,2±17,1 кг) исследовалась динамика концентрации БА бета-аланина в плазме крови после перорального его введения в нескольких вариантах.  *'''Исследование 1. Однократное введение БАбета-аланина''' (n=6): A) БА в виде дипептида с гистидином [[гистидин]]ом (эквивалентно 40 мг/кг веса тела) в курином бульоне; B) 10 мг/кг веса тела, C) 20 мг/кг веса тела и D) 40 мг/кг веса тела в виде препарата Карнозин (CarnoSyn, NAI, USA, бета-Аланин-L-Гистидин). *'''Исследование 2. Двухнедельное введение БАбета-аланина''' (n=6) в дозе 10 мг/кг веса тела 3 раза в день (три приема БА с 9.00 утра с интервалом 3 часа). *'''Исследование 3. Четырехнедельное введение БА бета-аланина или Карнозина''' (n=16) 4 раза в день по 800 мг БА или плацебо для оценки влияния хронического введения БА на биохимические и гематологические показатели крови.
[[Image:Alanin1.jpg|250px|thumb|right|Рис.1. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после однократного перорального введения в дозах 10 (белые кружки), 20 (черные треугольники) и 40 (белые ромбы) мг/кг. (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.]]
'''В исследовании 1''' с однократным введением различных доз БА бета-аланина выявлено, что доза 40 мг/кг БА β-аланина вызывает побочные эффекты в виде покраснения и покалывания, которые развиваются через 20 мин после перорального применения и продолжаются в течение 1 часа, после чего бесследно исчезают. Эти проявления возникают первично на ушах, лбе, коже черепа, и распространяются далее на нос, руки, спину и ягодицы. Аналогичные, но гораздо менее интенсивные и кратковременные проявления, отмечены и в дозе 20 мг/кг веса тела, и достаточно редко – в дозе 10 мг/кг (ориентировочная фиксированная средняя доза 800 мг на прием). Пики концентраций БА бета-аланина (рис.1) для всех исследуемых доз наблюдались в интервале 30-40 минут, при этом максимальная концентрация БА β-аланина в плазме отмечалась в дозе 40 мг/кг (833,5±42,8 мкмол/л на 40-ой минуте), что в 2,2 раза превышает максимальную концентрацию в дозе 20 мг/кг. Эффект дозы 10 мг/кг был очень мал. Затем концентрация БА в плазме быстро снижается в течение часа в дозе 20 мг/кг, и 1,5-2 часов – в дозе 40 мг/кг. Время полужизни (Т1Т<sub>1/2</sub>) для всех введенных доз составляет около 25 минут. Результаты показали, что имеются существенные различия в абсорбции и динамике содержания БА бета-аланина в плазме между пероральным введением БА бета-аланина в чистом виде или в растворе куриного бульона (рис.2).
[[Image:Alanin2.jpg|250px|thumb|right|Рис.2. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после однократного перорального введения БА в чистом виде в дозе 40 мг/кг (белые ромбы), и в такой же дозе в составе куриного бульона (черные квадраты). (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.]]
Из графиков видно, что куриный бульон замедляет всасывание БАбета-аланина, снижает пик его концентрации в плазме крови, но пролонгирует время повышения концентрации. Так, пик концентрации в плазме при введении БА бета-аланина в составе куриного бульона примерно в два раза ниже, чем при введении БА бета-аланина в чистом виде (427,9±66,1 мкмол/л на 90-ой минуте, и 833,5±42,8 мкмол/л на 40-ой минуте, соответственно).
В исследовании 1 оценивалась также потеря введенного перорально БА бета-аланин с мочой в зависимости от дозы. Потери составили 0,6±0,09%, 1,5±0,4% и 3,6±0,5% для доз 10, 20 и 40 мг/кг, соответственно.
[[Image:Alanin3.jpg|250px|thumb|right|Рис.3. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после трехкратного перорального введения БА (с интервалом в три часа) в дозе 10 мг/кг в первый (черные треугольники) и в 15-й день (белые ромбы). (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.]]
'''В исследовании 2''' с двухнедельным введением БА бета-аланина в дозе 10 мг/кг веса тела 3 раза в день (три приема БА бета-аланина с 9.00 утра с равными интервалами в 3 часа) и примерной разовой дозой 800 мг выявлено (рис.3), что концентрация БА бета-аланина в плазме после каждого приема препарата успевала вернуться к исходным значениям (через 3 часа) перед следующим приемом. Побочные эффекты, характерные для более высоких доз и, частично, для данной дозы при первом применении, при повторных приемах уже не проявлялись. Пик концентрации БА бета-аланина в плазме после приема дозы 10 мг/кг составлял такую же величину, что и в исследовании 1.
'''В исследовании 3''' с 4-х недельным введением БА бета-аланина (4 раза в день по 800 мг, т.е. примерно 10 мг/кг веса) не выявлено каких-либо изменений биохимических и гематологических показателей в плазме крови, а также проявлений побочных эффектов. Параллельно в течение 4-х недель приема препарата происходило нарастание содержания карнозина в мышечной ткани с исходных 22,7±1,1 ммол/кг/дм до 33,4±4,0 ммол/кг/дм к концу 4-ой недели (в среднем +47%). Это расценивается в качестве положительного эффекта в плане регуляции рН [[Мышечная клетка|мышечных клеток]], обеспечения нормального перехода мышц из состояния отдыха в рабочее (тренировочное) состояние, и наоборот, а также снижения лактата[[лактат]]а.
В связи с выявленным снижением выраженности и частоты побочных эффектов БА бета-аланина при замедлении всасывания в кишечнике, были созданы ретардные формы с постепенным высвобождением БА бета-аланина (таблетки, порошки). Изучению фармакокинетики и связанных побочных эффектов одной из таких форм БА бета-аланина в виде таблеток (slow-release - SR) c постепенным выделением БА β-аланина посвящена работа J.Decombaz и соавторов (<ref>Decombaz J., Beaumont M., Vuichoud J. et al. Effect of slow-release b-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012), 43:67–76.</ref>. В рандомизированном одиночном-слепом исследовании на 11 здоровых добровольцах сравнивались основные фармакокинетические параметры однократного утреннего введения обычного водного раствора БА бета-аланина и ретардных таблеток в дозе 1,6 г (табл.1).[[Image:Alanin10.jpg|250px|thumb|right|Таблица 1. Сравнительный фармакокинетический анализ однократного болюсного введения двух пероральных форм БА бета-аланина (быстрое и медленное высвобождение активного вещества). Примечания: Сmax (мкмол/л) – максимальная (пик) концентрация БА бета-аланина в плазме крови; Тmax (мин) – время достижения максимальной концентрации в плазме крови; AUC (мкмол/л/час) – площадь под кривой концентрация/время; Ka (мин) – константа скорости абсорбции; Tlog (мин) – время первого появления БА в плазме; Т1/2 (мин) – время полужизни БА. TABa – таблетки с замедленным высвобождением БА; REFb – водный раствор БА сравнения (референтный). По J.Decombaz и соавт. (2012).]]Как видно из таблицы 1, величина пика концентрации (Сmax) при приеме ретардных таблеток была примерно в три раза ниже, чем в случае водного раствора, а время его достижения (Тmax) – в два раза дольше (1 час против 0,5 часа). В то же время не выявлено различий в площадях под кривыми «концентрация/время», снижались потери БА β-аланина с мочой (202 против 663 мкмол, Р<0,0001) и повышалось удержание БА бета-аланина в организме (98.9% против 96.3%, Р<0.001). Побочные эффекты, описанные ранее как покраснение и покалывание в определенных участках кожи, и соответствующие по времени максимуму концентрации БА β-аланина в плазме крови, были значительно менее выражены при приеме ретардных таблеток (Р<0,001), а по частоте возникновения приближались к эффекту плацебо. Таким образом, ''применение ретардных форм, обеспечивающих замедленное высвобождение БА бета-аланина в кишечнике, позволяет избежать побочных эффектов неретардированных форм БА бета-аланина при сохранении величины основного показателя (для хронического применения вещества) – площади под кривой «концентрация-время»''. Эти факторы обеспечивают, по крайней мере для тех спортсменов, которые болезненно реагируют на покраснение кожи и парестезии при применении повышенных доз БАбета-аланина, несомненные преимущества SR-форм.
==== Метаболизм ====
Особенности метаболизма БА β-аланина обусловлены его химической структурой. На рисунке 4 представлено сходство БА бета-аланина с некоторыми другими аминокислотами и процесс образования карнозина в [[Скелетные мышцы|скелетных мышцах]].
[[Image:Alanin4.jpg|250px|thumb|right|Рис.4. Сходство химической структуры БА, Глицина и ГАМК (вверху) и биохомический процесс образования Карнозина в скелетных мышцах (внизу). По J.Caruso и соавт., 2012.]]
'''БАБета-аланин''' – непротеиногенная [[Аминокислоты - вред и побочные эффекты|аминокислота ]] (не участвует в синтезе белков) и продуцируется в самом организме в процессе распада пиримидинов, декарбоксилирования кишечной микрофлорой L-аспартата и трансаминирования при взаимодействии 3-оксопропаната и L-аспартата (<ref>Tiedje K.E.Tiedje и соавт, Stevens K., Barnes, S., Weaver D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int. 2010), 57, 177–188.</ref>. Синтез БА бета-аланина происходит в [[Печень|печени ]] в процессе необратимой деградации тимина, цитозина и урацила. После синтеза БА β-аланина транспортируется в мышечные клетки, проникает в сарколемму за счет натрий и хлор-зависимой транспортной системы, которая может быть универсальной для сходных по химической структуре аминокислот (рис.4). Аналогичный процесс происходит и в ЦНС, где БА играет роль нейропередатчика и нейромодулятора, имеет идентифицированные места связывания с рецепторами ГАМК, NMDA и глицина в гиппокампе и некоторых других структурах, участвующих в формировании когнитивных функций.
Внутри возбудимых клеток БА β-аланин может формировать дипептидную связь с гистидином в процессе [[АТФ: научный обзор|АТФ-зависимой реакции ]] и действия фермента карнозин-синтетазы, образуя карнозин (рис.4). Синтез карнозина регулируется величиной поступления БА β-аланина внутрь мышечных волокон (<ref>Derave W.Derave и соавт, Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010, 1, 40(3):247-263.</ref>, уровнем активности карнозин-синтетазы и, в отсутствие достаточного поступления БА бета-аланина с пищей, печеночным синтезом БА бета-аланина и его транспортом в [[скелетные мышцы (]]<ref>Harris, R.C.Harris и соавт, Wise, J.A., Price, K.A. et al. Determinants of muscle carnosine content. Amino Acids 2012), 43, 5–12.</ref>. Нормальный уровень внутриклеточного карнозина 20-30 ммол/кг-1 сухого веса тела, у мужчин он выше, чем у женщин, с возрастом понижается в среднем на 47% к 70 годам по сравнению с 20-летними лицами. Существует прямая корреляционная связь возрастного снижение БА β-аланина и тестостерона[[тестостерон]]а. Карнозин, как и БАбета-аланин, выполняет множество функций: снижение окисления липидов и протеинов; повышение АТФ-азной активности; регуляция функции макрофагов; защита клеточных мембран; образование хелатов двухвалентных катионов и др., в том числе, связанных с процессом старения. Важным аспектом является участие в нейрогенной регуляции, особенно, в процессах памяти.
==== Фармакодинамика (механизм действия) ====
'''[[Карнозин]] (β-Аланил-L-Гистидин) ''' – естественный дипептид организма, образующийся, как уже отмечалось выше, в результате соединения [[Бета-аланин (научный обзор)|бета-Аланина аланина]] и Гистидина [[Гистидин]]а при помощи карнозин-синтетазы. Депо карнозина находится в скелетных мышцах. Распад этого соединения происходит под влиянием фермента карнозиназы, которая локализуется в сыворотке крови и ряде тканей, но отсутствует в мышечной ткани <ref>Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance.Sale и соавтAmino Acids.2010, 201039(2):321–333.</ref>. Поэтому ''пероральное введение карнозина – неэффективный метод повышения содержания уровня внутримышечного карнозина, т.к. поступающий через кишечник карнозин в конечном счете полностью метаболизируется перед попаданием в мышцы'' (<ref>Gardner M.L.Gardner и соавт, Illingworth K.M., Kelleher J., Wood D.Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J. Physiol. 1991, 439(1):411–422.</ref>. Роль '''Карнозина как внутриклеточного протонного буфера''' впервые была выявлена еще в 1953 году в СССР С.Е.Севериным (<ref>Severin S.E.Severin и соавт, Kirzon M.V., Kaftanova T.M. Effect of carnosine and anserine on action of isolated frog muscles. Dokl. Akad. Nauk SSSR.1953, 91(3):691–694.</ref>, который показал, что отсутствие карнозина приводит к быстрому развитию [[Мышечная усталость и митохондриальное дыхание|усталости ]] и ацидоза. По показателю логарифма константы диссоциации (pKa) равному 6.83 и высокой концентрации в мышцах карнозин представляется более эффективным буфером, чем два других физико-химических буфера - [[Бикарбонаты (бикарбонатная буферная система)|бикарбонат ]] (pKa 6.3) или неорганический [[Фосфаты|фосфат ]] (pKa 7.2), при превышении физиологического диапазона рН. Предварительные данные показывают, что вклад карнозина в буферизационную способность мышц составляет от 7 до 40%. Данные о способности пищевых добавок БА β-аланина увеличивать внутримышечную концентрацию карнозина и снижать посттренировочную редукцию рН (ацидоз, вызванный физической нагрузкой), подтверждают ''концепцию о значительной роли карнозина в буферных системах мышечной ткани''. Потенциальная физиологическая роль карнозина не ограничивается функцией протонного буфера. В процессе повышенных физических нагрузок образуется большое количество реактивных кислородных радикалов, которые вносят существенный вклад в развитие утомляемости и мышечных повреждений. Карнозин препятствует действию этих субстанций, выступая в роли антиоксиданта (G.I.Klebanov и соавт., 1998), а также связывая в виде хелатных соединений ионы таких металлов как медь и железо. === Применение пищевых добавок БА в различных видах спорта ======= Велосипедный спорт ====Велосипедный спорт (C.A.Hill и соавт., 2007). БА (CarnoSyn) назначался перорально 13 лицам в течение 4 недель, а 8 из них – в течение 10 недель. Биопсия мышечной ткани производилась до назначения БА, через 4 и 10 недель после приема БА. Испытуемые проходили тест на велотренажере для определения общего объема выполненной работы (total work done – TWD) при максимальной мощности (Wmax). 12 испытуемых получали плацебо. Выявлено, что БА значительно и достоверно повышает содержание карнозина в мышцах (+58.8% и +80.1% после 4-х и 10-и недель приема БА, соответственно). Это возрастание было одинаковым в процентном отношении во всех типах мышечных волокон, хотя исходные показатели концентрации карнозина были в 1,7 раза выше в волокнах типа IIa. В контрольной группе не отмечено изменений. Концентрация таурина не изменялась. Параллельно БА увеличивал общий объем выполненной работы по мере возрастания длительности приема аминокислоты: +13% на 4-ой неделе, и еще +3,2% дополнительно – на 10-й неделе. В контрольной группе также не выявлено изменений. Авторы связывают '''повышение работоспособности в тесте на велотренажере под влиянием БА с возрастанием концентрации внутримышечного карнозина'''.==== Борьба и футбол ==== Цель двойного-слепого плацебо-контролируемого исследования (B.D.Kern, T.L.Robinson, 2011) заключалась в оценке эффективности пищевых добавок БА как потенциального эргогенного вещества в тестах анаэробной мощности (высокоинтенсивные кратковременые упражнения, повторяющийся спринт) после 8 недель приема БА. В исследовани приняли участие 22 борца (возраст 19.9 ± 1.9 года) и 15 футболистов (18.6 ± 1.5 года), каждый из которых получал 4 г/день БА или плацебо. У испытуемых до и после приема БА фиксировались следующие показатели: время выполнения теста бега на 300 ярдов отрезками по 25 ярдов с возвратом (timed 300-yd shuttle – один из беговых тестов оценки состояния сердечно-сосудистой системы, требующий высокой анаэробной выносливости); время удержания на перекладине в положении подтягивания (90° flexed-arm hang (FAH), композиция тела и лактат крови после бегового теста. У футболистов отмечено укорочение времени выполнения бегового теста на 1,1 сек по сравнению с плацебо (0,4 сек) и удлинение времени удержания по тесту FAH (3,0 сек против 0,39 сек в плацебо-группе). У борцов на первый план вышло увеличение ТМТ (тощей массы тела) – +0,5 кг против снижения на 0,4 кг в плацебо-группе. У футболистов также отмечено повышение ТМТ: на 1 кг в группе с БА и на 0,5 кг – в плацебо-группе. Авторы делают вывод о '''положительном влиянии БА в дозе 4 г/день на физическую готовность борцов и футболистов за счет повышения анаэробной мощности'''. J.R.Hoffman и соавторы (2008) исследовали эффект 30-дневного приема БА в дозе 4,5 г/день у игроков футбольной команды в отношении показателей анаэробной готовности. Испытуемые были рандомизированы в две группы: БА и плацебо (мальтодекстрин 4,5 г/день). Прием добавок начинался за 3 недели до предсезонных тренировочных сборов и продолжался еще 9 дней после их начала. Оценка физической готовности включала 60-секундный «Wingate anaerobic power test» и возвратный бег на 200 ярдов с 2-х минутным отдыхом между спринтами. Показатели этих тестов оценивались в первый день сборов. БА не влиял на обучаемость испытуемых в процессе повторения упражнений, но снижал утомляемость по показателю анаэробной мощности в Wingate-тесте. БА повышал объем выполняемой работы по тесту жима лежа и другим тестам в процессе тренировочной сессии (P = 0,09). Кроме того, БА снижал субъективное чувство усталости (данные специальных анкет-опросников). Авторы делают заключение, что '''прием БА у хорошо тренированных спортсменов в дозе 4.5 г/день в течение 30 дней не влияет на обучаемость при повторяющихся упражнениях, однако достоверно увеличивает объем выполняемой работы при жиме лежа и проявляет общую тенденцию к росту показателей пропорционально времени приема препарата. БА также снижает развитие усталости'''.==== Гребной спорт ====Исходной предпосылкой работы A.Baguet и соавт., 2010 явилось установленное ранее в исследованиях у нетренированных лиц повышение содержания карнозина в мышечной ткани и улучшение анаэробной тренировочной физической готовности. Цель работы состояла в установлении взаимосвязи между повышением мышечного карнозина и улучшением физической готовности после приема БА у элитных гребцов. В исследовании приняло участие 18 элитных бельгийских гребцов, которые в течение 7 недель принимали БА (5 г/день) или плацебо. Методом магнитно-резонансной спектроскопии определялось содержание карнозина в двух мышцах (soleus и gastrocnemius medialis) до и после курса приема БА и плацебо. Физическая готовность оценивалась по результатам выполнения 2 км эргометрического теста. Исходные показатели содержания карнозина в мышцах имели строгую положительную корреляцию со скоростью прохождения дистанции в диапазоне 100, 500 и 2000 м. На фоне курсового приема БА содержание карнозина возрастало на 45,3% в [[Камбаловидная мышца|камбаловидной мышце]] и на 28,2% - в икроножной. Время прохождения дистанции в группе с БА было короче на 4,3 с по сравнению с плацебо-группой. Повышение концентрации карнозина положительно коррелировало с улучшением физической готовности. Авторы делают заключение, что '''уровень мышечного карнозина – новая детерминанта готовности гребцов, а курсовое назначение БА в дозе 5 г/день в течение 49 дней достоверно повышает эту готовность на протяжении всей дистанции в 2 км в прямой связи с возрастанием уровня карнозина'''.  ==== Плавание ==== W.Chung и соавторы (2012) из Австралии выполнили специальное исследование в группах элитных пловцов (23 мужчины и 18 женщин, возраст 21.7 ± 2.8 года), которые в течение 10 недель получали пищевую добавку БА (4 недели нагрузочную дозу 4,8 г/день, далее поддерживающую дозу 3,2 г/день) или плацебо. Рассчитывался логарифм времени тренировочной готовности до и после курса приема БА (до и после национальных и международных соревнований). Стандартный тренировочный тест включал спринтерскую дистанцию (4х50м). Анализ крови включал оценку рН, концентрацию бикарбоната и лактата. Не выявлено значимых эффектов БА в отношении показателей крови. Вместе с тем, динамика изменений физической готовности, определяемая по времени выполнения плавательного теста, существенно зависела от срока приема БА (рис.6). [[Image:Alanin6.jpg|250px|thumb|right|Рис.6. Изменение времени прохождения короткой дистанции элитными австралийскими пловцами (в% по оси ординат) до (week 0) и после курсового приема БА (сплошная линия) и плацебо (пунктирная линия) через 4 недели (week 4) и 10 недель (week 10). До 4-ой недели доза БА составляла 4,8 г/день (нагрузочная доза), после 4-ой и до 10 недели – 3,2 г/день (поддерживающая доза). Остальные объяснения в тексте. По W.Chung и соавт. (2012)]]Как видно из графиков, до 4-ой недели включительно отмечается снижение среднего времени прохождения дистанции на фоне ежедневной дозы БА 4,8 г/день. Однако далее переход на поддерживающую дозу 3,2 г/день приводит к полному устранению положительных сдвигов в концу курсового приема БА. Авторы делают заключение, что '''прием БА в дозе 4.8 г/день в течение 4-х недель умеренно повышает физическую готовность у элитных женщин-пловцов, но при дальнейшем снижении дозы до 3,2 г/день в течение 6-и недель эти положительные сдвиги уходят'''. Выявленные закономерности требуют: 1) учета времени курсового назначения дозы 4,8 г/день (не более 4-х недель до старта); 2) продолжения исследования данной дозы без снижения в сроки более 4-х недель; 3) исследования комбинаций БА (в частности с креатином) в тех же условиях. == Обзоры и мета-анализ эффективности и безопасности добавок БА в спортивной медицине == '''G.G.Artioli и соавторы (2010)''' (обзор). В этом аналитическом исследовании представлены данные по метаболизму БА и карнозина при их экзогенном введении, полученные на тот момент, и обсуждается влияние пищевых добавок БА на физическую готовность. Постулируется, что внутримышечный ацидоз является одной из главных причин усталости при интенсивных тренировках, а карнозин играет значительную роль в регуляции мышечной рН. Синтез карнозина из БА и [[гистидин]]а в мышечных клетках ограничивается величиной поступления БА внутрь клеток, т.е. биодоступностью последнего. Добавки БА увеличивают внутриклеточное содержание карнозина, повышая буферную способность клеток нивелировать ацидотические изменения в процессе физических нагрузок и , как результат, усиливая физическую готовность спортсменов и лиц, занимающихся улучшением своей физической формы. Положительные эффекты БА подтверждены для многократных и однократных физических нагрузок, длящихся более 60 секунд. Кроме того, БА замедляет развитие нейромышечной усталости. Хотя БА не повышает максимальную силу или VO2макс, некоторые аспекты, характеризующие выносливость, такие как анаэробный порог и время истощения, могут улучшаться. При применени дозы, превышающей 800 мг, могут наблюдаться парестезии, которые, однако, носят транзиторный характер, и связаны с величиной концентрации БА в плазме. Эти побочные эффекты могут быть нивелированы применением специальных форм с медленным высвобождением БА в кишечнике, или использованием специальных схем и комбинаций в процессе дозирования БА. Пищевые добавки БА безопасны как при однократном, так и достаточно длительном применении.  '''W. Derave и соавторы (2010)''' (обзор). Хроническое пероральное применение БА во всех вариантах без исключения повышает внутримышечную концентрацию карнозина, причем в зависимости от дозы и частоты назначения уровень карнозина может увеличиваться до 80%. Авторы обзора обращают внимание на тот факт, что улучшение физической готовности отмечается как у тренированных, так и у начинающих спортсменов и лиц, подверженных физическим нагрузкам. Это расширяет перечень целевых групп, которым могут быть рекомендованы пищевые добавки БА в качестве средств улучшения физической формы и повышения эффективности тренировок. Оценивая роль биохимических процессов, в которых участвует БА, авторы делают вывод о том, что БА, хотя и не участвует в классических АТФ-метаболических путях, играет важную роль как дипептид с гистидином в гомеостазе сократительных мышечных клеток. Это касается получения анаэробной энергии, снижения внутриклеточного ацидоза в скелетной мускулатуре, повышения устойчивости к повреждающему действию реактивных кислородных радикалов (антиоксидантная активность). Отличительной особенностью действия БА является выраженное увеличение концентрации карнозина в мышечных волокнах IIa типа (быстросокращающиеся волокна), хотя и в других типах волокон она нарастает при введении БА, но в меньшей степени. На основании ряда сравнительных исследований авторы обзора делают вывод, что содержание карнозина в мышцах меньше у женщин по сравнению с мужчинами, снижается с возрастом, зависит от диеты (концентрация карнозина ниже у вегетарианцев). Атлеты-спринтеры имеют значительно более высокую исходную концентрацию карнозина, что расценивается в качестве генетического фактора и критерия отбора будущих спортсменов. Авторы считают доказанной эффективность БА в целом ряде конкретных ситуаций при длительной подготовке спортсменов. В то же время, многие аспекты влияния БА на физическую готовность требуют дальнейшего изучения.  '''R.M.Hobson и соавторы (2012)''' (мета-анализ). В данный мета-анализ включено 15 опубликованных статей по результатам 57 оценок в 23 тестах физической готовности влияния 18 режимов пищевых добавок у 360 участников (174 – добавки БА, группа БА; 186 участников – группа плацебо – ПЛ) (табл.2) '''Таблица 2. Опубликованные исследования (за период 2006-2011) применения пищевых добавок БА в спорте, включенные в мета-анализ R.M.Hobson и соавторов (2012)''' {| class="wikitable"|-! Авторы исследования !! Категория участников !! Протокол теста !! Дозирование БА !! Суммарная доза БА (г) !! Средняя величина эффекта|-| А.Baguet и соавт., 2010 || Элитные гребцы БА=8, ПЛ=9 || Гребля 2 км || 5 г/день 49 дней || 245 || БА=0,261<br />ПЛ=-0,098|-| W.Derave и соавт., 2007 || Мужчины-бегуны на 400 м. БА=8, ПЛ=7 || Бег-спринт, изометрические упражнения на выносливость || 2,4 г/день 4 дня, затем 3,6 г/день 4 дня, затем 4,8 г/день 20-27 дней || До 153,6 || БА=0,369<br />ПЛ=0,284|-| С.А.Hill и соавт., 2007 || Мужчины, восстановительный период. БА=13, ПЛ=12 || Объем работы на велотре-нажере при 110% макс. мощности || 4 г/день 7 дней, затем 4,8 г/день 7 дней, затем 5,6 г/день 7 дней, затем 6,4 г/день 7 дней || 145,6 за 4 недели 414,4 за 10 недель || БА=0,850<br />ПЛ=0,043 <br />БА=1,046<br />ПЛ=0,105|-| Т.Jordan и соавт., 2010 || Мужчины, восстановительный период. БА=8, ПЛ=9 || Бегущая дорожка, бег до отказа (изнеможения) || 6 г/день 28 дней || 168 || БА=0,185<br />ПЛ=0,070|-| I.P.Kendrick и соавт., 2008 || Мужчины-студенты БА=13, ПЛ=13 || Общая сила, величина изокинетической мощности, мышечная выносливость || 6,4 г/день 70 дней || 448 || БА=0,691<br />ПЛ=0,654|-| B.D.Kern, T.L.Robinson, 2011 || Мужчины-борцы и футболисты, БА=17, ПЛ=20 || Спринтерский бег, мышечная выносливость || 4 г/день 60 дней || 224 || БА=0,255 <br />ПЛ=0,176|-| С.Sale и соавт., 2011 || Мужчины, восстановительный период. БА=10, ПЛ=10 || Объем работы на велотре-нажере при 110% макс. мощности || 6,4 г/день 28 дней || 179 || БА=0,964<br />ПЛ=0,104|-| A.E.Smith и соавт., 2009a,b <br />3 недели || Мужчины, восстановительный период. БА=18, ПЛ=18 || Объем работы на велотренажере при 110% макс. мощности VO2max || 6 г/день 21 день || 126 || БА-0,600<br />ПЛ=0,607|-| A.E.Smith и соавт., 2009a,b <br />6 недель || Мужчины, восстановительный период. БА=18, ПЛ=18 ||Объем работы на велотренажере при 110% макс. мощности VO2max || 6 г/день 21 день, затем 3 г/день 21 день || 189 || БА-1,067<br />ПЛ=1,180|-| J.R.Stout и соавт., 2006 || Здоровые мужчины-добровольцы, БА=12, ПЛ=13 || Циклический тест по возрастающей до отказа || 6,4 г/день 6 дней, затем 3,2 г/день 22 дня || 108,8 || БА=0,489<br />ПЛ=-0,063|-| J.R.Stout и соавт., 2007 || Здоровые женщины-добровольцы, БА=11, ПЛ=11 || Циклический тест по возрастающей до отказа || 3,2 г/день 7 дней, затем 6,4 г/день 21 день || 156,8 || БА=0,217<br />ПЛ=-0,023|-| J.R.Stout и соавт., 2008 || Пожилые мужчины и женщины-добровольцы, БА=12, ПЛ=14 || 2-х мин циклы на тренажере с возрастающей нагрузкой || 2,4 г/день 90 дней || 216 || БА=2,648<br />ПЛ=-0,007|-| K.M.Sweeney и соавт., 2010 || Мужчины, восстановительный период. БА=9, ПЛ=10 || 2 подхода 5х5 с. Спринт на беговой дорожке || 4 г/день 7 дней, затем 6 г/день 28 дней || 196 || БА=0,037<br />ПЛ=0,116|-| R.VanThienen и соавт., 2009 || Мужчины-велосипедисты, БА=9, ПЛ=8 || Велотренажер тест до отказа Имитация режима велогонки || 2 г/день 14 дней, затем 3 г/день 14 дней, затем 4 г/день 28 дней || 182 || БА=0,292<br />ПЛ=0,060|-| A.A.Walter и соавт., 2010 <br />3 недели || Женщины, восстановительный период. БА=14, ПЛ=19 || Велотренажер тест до отказа || 6 г/день 21 день || 126 || БА=0,953<br />ПЛ=0,537|-| A.A.Walter и соавт., 2010 <br />6 недель || Женщины, восстановительный период. БА=14, ПЛ=19 || Велотренажер тест до отказа || 6 г/день 21 день, затем 3 г/день 21 день || 189 || БА=1,129<br />ПЛ=0,791|-| R.F.Zoeller и соавт., 2007 || Здоровые мужчины-добровольцы, БА=12, ПЛ=13 || Велотренажер тест до отказа || 6,4 г/день 6 дней, затем 3,2 г/день 22 дня || 108,8 || БА=0,117<br />ПЛ=-0,152|} <small>''Примечания'': БА – бета-аланин; ПЛ – плацебо</small>  Добавки БА достоверно (P=0,002) по сравнению с ПЛ улучшали показатели мышечной выносливости при выполнении кратковременных тестовых упражнений, а также физической готовности, при этом эффективная суммарная курсовая доза БА составила 179 г. Не выявлено положительного влияния БА в тестах продолжительностью менее 60 с. Данный мета-анализ дал хорошую доказательную базу наличия у БА умеренного эргогенного эффекта, проявляющегося повышением на 2,85% мышечной выносливости под влиянием БА в процессе выполнения движений продолжительностью 60-240 с. == Пищевые добавки БА и физическая подготовка военнослужащих ==
Потенциальная физиологическая роль карнозина не ограничивается функцией протонного буфера. В процессе интенсивных повышенных физических тренировок военных и повышения их боеготовности часто отмечается снижение физической формы. Применение специальных пищевых добавок с целью избежать подобных спадов физической формы – обычная практика в армиях многих стран. В частностинагрузок образуется большое количество реактивных кислородных радикалов, которые вносят существенный вклад в США частота применения БАДов достигает 30-40% в зависимости от рода войск развитие [[Утомление и утомляемость|утомляемости]] и характера выполняемых задачмышечных повреждений. Следует подчеркнутьКарнозин препятствует действию этих субстанций, что '''выступая в армейской подготовке военнослужащих западных странроли [[Антиоксиданты|антиоксиданта]]<ref>усталости Klebanov G.I., как и в спортивной подготовке спортсменовTeselkin Yu. O., проявляется четкая тенденция к смещению акцента с применения фармакологических средств на использование нутритивных методов повышения физической готовности'''Babenkova I.V. Такet al. Effect of carnosine and its components on free-radical reactions. Membr Cell Biol. 1998, ряд членов Медицинской Корпорации армии США высказал необходимость исследования нефармакологических 12(недопинговых1) альтернатив снижения утомляемости военнослужащих :89–99.</ref>, а также связывая в процессе тренировки выносливости и выполнения тактических задач (M.B.Russo виде хелатных соединений ионы таких металлов как [[медь]] и соавт., 2008)[[железо]].
Β== Пищевые добавки бета-Аланин (БА) очень популярная добавка (J.R.Hoffman аланина и соавт., 2015a,b), используемая для повышения мышечной силы и мощности у тренированных спортсменов. Однако, до настоящего времени отсутствовали исследования влияния БА на функциональную подготовку солдат, выполняющих специфические оперативные задачи. Проблема заключалась в том, что военные врачи при назначении БА руководствовались результатами исследований на спортсменах и экстраполировали их в отношении военных, без учета специфики стоящих перед ними задач, адаптации к специальным тренировочным программам. Считалось, что результаты, полученные в конкурентных видах спорта, автоматически можно переносить на армию без анализа влияния БА на выполнение тактических заданий.физическая подготовка военнослужащих ==
Первая работа по специальной оценке эффективности БА у военнослужащих была опубликована только В процессе интенсивных физических тренировок военных и повышения их боеготовности часто отмечается снижение физической формы. Применение специальных пищевых добавок с целью избежать подобных спадов физической формы – обычная практика в 2014 году Rармиях многих стран.Ko В частности, в США частота применения БАДов достигает 30-40% в зависимости от рода войск и соавторамихарактера выполняемых задач. В этом обзореСледует подчеркнуть, сделанном по заказу Министерства оборонычто '''в армейской подготовке военнослужащих западных стран, анализируется безопасность как и эффективность БА и его комбинаций в спортивной подготовке спортсменов, проявляется четкая тенденция к смещению акцента с другими фармаконутриентами в процессе применения фармакологических средств на использование нутритивных методов повышения физической подготовкиготовности'''. Так, ряд членов Медицинской Корпорации армии США высказал необходимость исследования нефармакологических (недопинговых) альтернатив снижения усталости, восстановления после упражнений у утомляемости военнослужащих в целом на основе 13 баз данныхпроцессе тренировки выносливости и выполнения тактических задач<ref>Russo M.B., Arnett M.V. Чрезвычайная вариабельность исследованных групп лиц, доз БАThomas M.L., их комбинацийCaldwell J.A. Ethical use of cogniceuticals in the militaries of democratic nations. Am. J. Bioeth. 2008, отсутствие привязки к выполнению физических упражнений и многие другие факторы не позволили дать положительное заключение об эффективности БА8:39–49.</ref>.
ИсследованияΒ-Аланин (БА) очень популярная добавка<ref name="Hoffman15a">Hoffman J.R., проведенные Stout J.R., Harris R.C., Moran D.S. β‑Alanine supplementation and military performance. Amino Acids. 2015a, 47: 2463-2474.</ref><ref name="Hoffman15b">Hoffman J.R., Landau G., Stout J.R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids. The Forum for Amino Acid, Peptide and Protein Research. 2015b, 47(3): 627-636.</ref>, используемая для повышения [[Сила мышц|мышечной силы]] и соавторами (2014[[Мощность мышц|мощности]] у тренированных спортсменов. Однако, до настоящего времени отсутствовали исследования влияния бета-аланина на функциональную подготовку солдат, 2015 aвыполняющих специфические оперативные задачи. Проблема заключалась в том,b) позволили более детально оценить эффективность БА что военные врачи при выполнении специфических назначении бета-аланина руководствовались результатами исследований на спортсменах и экстраполировали их в отношении военных заданий с повышенной физической нагрузкой, требующих решения без учета специфики стоящих перед ними задач, адаптации к специальным тренировочным программам. Считалось, что результаты, полученные в конкурентных видах спорта, автоматически можно переносить на армию без анализа влияния бета-аланина на выполнение тактических задачзаданий.
В исследовании Первая работа по специальной оценке эффективности бета-аланина у военнослужащих была опубликована только в 2014 года Jгоду R.Ko и соавторами<ref>Ko R.Hoffman и соавторы показали, что '''прием БА (6 гLow Dog T., Gorecki D.K. et al. Evidence-based evaluation of potential benefits and safety of beta-alanine supplementation for military personnel. Nutr. Rev. 2014, 72:217–225.</день) в течение 4ref>. В этом обзоре, сделанном по заказу Министерства обороны, анализируется безопасность и эффективность бета-х недель молодыми здоровыми солдатами элитного военного подразделения армии Израиля увеличивает мощность физических движений (прыжков), точность стрельбы аланина и скорость поражения цели'''. Эти улучшения его комбинаций с другими фармаконутриентами в подготовке выявляются процессе физической подготовки, снижения усталости, восстановления после 4 недель высокоинтенсивных тренировок и однократного бега (4 км) упражнений у военнослужащих в целом на выносливостьоснове 13 баз данных. В то же время Чрезвычайная вариабельность исследованных групп лиц, доз бета-аланина, их комбинаций, отсутствие привязки к выполнению физических упражнений и многие другие факторы не выявлено улучшений когнитивных функций под влиянием БА в условиях повышенных нагрузок и утомления. Авторы объясняют этот факт возможной неадекватностью используемого теста в данных условиях для оценки изменений когнитивных функцийпозволили дать положительное заключение об эффективности бета-аланина.
В последующих работах Исследования, проведенные J.R.Hoffman и соавторы (2015a,b) на солдатах этого же элитного подразделения сил самообороны Израиля исследовали влияние ежедневного приема БА в дозе 6 гсоавторами<ref name="Hoffman15a" /><ref name="Hoffman15b" /день в течение 30 дней на содержание карнозина в мышцах и мозге методом магнитно-резонансной спектроскопии (МРС – MRS – диагностический метод исследования><ref name="Hoffman14">Hoffman J.R., основанный на использовании явления ядерного магнитного резонанса для получения биохимического профиля тканей)Landau G. Оценивалась также физическая готовность и когнитивные функции, но уже с помощью другого теста, более адекватного специфике задач данного подразделенияStout J.R. et al. β-alanine supplementation improves tactical performance but not cognitive function in elite special operation soldiers. J. Int. Soc. Через 30 дней отмечено значительное увеличение содержания карнозина в мышцах (рисSports Nutr.7)2014, совпадающее 11:15.</ref> позволили более детально оценить эффективность бета-аланина при выполнении специфических военных заданий с изменениямиповышенной физической нагрузкой, наблюдаемыми ранее у спортсменов (см.выше), но без изменения уровня карнозина в мозгетребующих решения тактических задач.
В исследовании 2014 года J.R.Hoffman и соавторы<ref name="Hoffman14" /> показали, что '''прием бета-аланина (6 г/день) в течение 4-х недель молодыми здоровыми солдатами элитного военного подразделения армии Израиля увеличивает мощность физических движений ([[Прыжки в высоту|прыжков]]), точность стрельбы и скорость поражения цели'''. Эти улучшения в подготовке выявляются после 4 недель [[Высокоинтенсивные тренировки|высокоинтенсивных тренировок]] и однократного [[бег]]а (4 км) на [[выносливость]]. В то же время не выявлено улучшений когнитивных функций под влиянием бета-аланина в условиях повышенных нагрузок и [[Утомление мышц|утомления]]. Авторы объясняют этот факт возможной неадекватностью используемого теста в данных условиях для оценки изменений когнитивных функций.[[Image:Alanin7.jpg|250px|thumb|right|Рис.7. Изменение содержания карнозина (ммоль) в скелетных мышцах (gastrocnemius) солдат элитного военного подразделения после 30 дней дней приема БА бета-аланина в дозе 6 г/день (темный столбик) или плацебо (светлый столбик)]]В последующих работах J.R.Hoffman и соавторы<ref name="Hoffman15a" /><ref name="Hoffman15b" /> на солдатах этого же элитного подразделения сил самообороны Израиля исследовали влияние ежедневного приема бета-аланина в дозе 6 г/день в течение 30 дней на содержание карнозина в мышцах и мозге методом магнитно-резонансной спектроскопии (МРС – MRS – диагностический метод исследования, основанный на использовании явления ядерного магнитного резонанса для получения биохимического профиля тканей). Оценивалась также физическая готовность и когнитивные функции, но уже с помощью другого теста, более адекватного специфике задач данного подразделения. Через 30 дней отмечено значительное увеличение содержания карнозина в мышцах (рис.7), совпадающее с изменениями, наблюдаемыми ранее у спортсменов, но без изменения уровня карнозина в мозге.
Улучшение физической готовности носило выборочный характер и касалось, в основном, однократного кратковременного (в интервале 60-360 секунд) упражнения (переноска пострадавшего на 50 метров) (рис.8).
[[Image:Alanin8.jpg|250px|thumb|right|Рис.8. Изменение (∆, сек, по оси ординат) времени выполнения теста «переноска пострадавшего» на 50 метров у солдат элитного военного подразделения после 30 дней приема БА бета-аланина в дозе 6 г/день (темный столбик) или плацебо (светлый столбик) ]]С помощью нового теста удалось выявить достоверное улучшение когнитивных функций на фоне приема БАбета-аланина, что проявлялось не только повышением точности стрельбы, но и способностью сохранять фокусировку в условиях массированного огня. Этот факт расценен авторами как результат антистрессорного опосредованного действия БАбета-аланина.
== БА Бета-аланин как потенциальный протектор посттравматических стрессовых нарушений ==
По данным Американской Ассоциации Психиатров (2013) [[стресс]], перенесенный вследствие травмы, в ряде случаев служит причиной значительных поведенческих изменений, включая боязнь высоких нагрузок, потерю концентрации, неадекватность реакций на события и др. Имеются основания предполагать, что повышение уровня карнозина в мозге оказывает [[Антидепрессанты|антидепрессанто-подобное действие (]]<ref>Tomonaga S.Tomonaga и соавт, Yamane H., Onitsuka E. et al. Carnosine-induced anti-depressant-like activity in rats. Pharmacol. Biochem. Behav. 2008), 89:627–632.</ref>. J.R.Hoffman и соавторами (<ref>Hoffman J.R., Ostfeld I., Stout J.R. et al. β‑Alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids, 2015c) , 47:1247–1257. </ref> выполнена экспериментальная работа, которая создает основу для еще одного направления применения БА бета-аланина в спортивной медицине – нутритивно-метаболической терапии (НМТ) и предотвращения развития посттравматического стресс-синдрома, ускорения процесса адаптации спортсменов после травм. В опытах на крысах 30-дневное пероральное введение БА бета-аланина в дозе 100 мг/кг значительно уменьшало поведенческие реакции, характерные для посттравматического состояния. Нормализация поведения сопровождалась повышением концентрации карнозина в гиппокампе.
{{аминокислоты|3=3}}
*[[Бета-аланин]]
*[[Бета-аланин (научный обзор)]]
*[[Бета-аланин в спорте]]
*[[Действие бета-аланина]]
*[[Применение бета-аланина]]
*[[Препараты витамина D в спортивной медицине: научный обзор]]
== Ссылки Источники ==*Artioli G.G., Gualano B., Smith A. et al. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2010, 42(6):1162-1173.*Baguet A., Bourgois J., Vanhee L. et al. Important Role Of Muscle Carnosine In Rowing Performance. J. Appl. Physiol. 2010, 109(4):1096-1101.*Chung W., Shaw G., Anderson M.E. et al. Effect of 10 Week Beta-Alanine Supplementation on Competition and Training Performance in Elite Swimmers. Nutrients 2012, 4(10): 1441-1453.*Decombaz J., Beaumont M., Vuichoud J. et al. Effect of slow-release b-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012, 43:67–76*Derave, W., Özdemir, M.S., Harris, R.C. et al. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J. Appl. Physiol. 2007, 103, 1736–1743.*Derave W., Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010, 1, 40(3):247-263.*De Vries H.A., Tichy M.W., Housh T.J. et al. A method for estimating physical working capacity at the fatigue threshold (PWCFT). Ergonomics. 1987, 30(8):1195-1204.*Gardner M.L., Illingworth K.M., Kelleher J., Wood D. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J. Physiol. 1991, 439(1):411–422.*Harris R.C., Hill C., Wise J.A. Effect of combined beta-alanine and creatine monohydrate supplementation on exercise performance (Abstract). Med. Sci. Sports Exerc. 2003, 35(5):S218.*Harris R.C., Tallon M.J., Dunnett M. et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30(3):279–289.*Harris, R.C., Wise, J.A., Price, K.A. et al. Determinants of muscle carnosine content. Amino Acids 2012, 43, 5–12.*Hill C.A., Harris R.C., Kim H.J. et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007, 32(2):225-233.*Hobson R.M., Saunders B., Ball G. et al. Effects Of β-alanine Supplementation On Exercise Performance: A Meta-analysis. Amino Acids. 2012, 43(1):25-37*Hoffman J.R., Ratamess N.A., Kang J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr. Exerc. Metab. 2006, 16(4):430-446.*Hoffman J.R., Ratamess N.A., Ross R. et al. Beta-alanine And The Hormonal Response To Exercise. Int. J. Sports Med. 2008a, 29(12):952-958.*Hoffman J.R., Ratamess N.A., Faigenbaum A.D. et al. Short-duration Beta-alanine Supplementation Increases Training Volume And Reduces Subjective Feelings Of Fatigue In College Football Players. Nutr. Res. 2008b, 28(1):31-35.*Hoffman J.R., Landau G., Stout J.R. et al. β-alanine supplementation improves tactical performance but not cognitive function in elite special operation soldiers. J. Int. Soc. Sports Nutr. 2014, 11:15.*Hoffman J.R., Stout J.R., Harris R.C., Moran D.S. β‑Alanine supplementation and military performance. Amino Acids. 2015a, 47: 2463-2474.*Hoffman J.R., Landau G., Stout J.R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids. The Forum for Amino Acid, Peptide and Protein Research. 2015b, 47(3): 627-636.*Hoffman J.R., Ostfeld I., Stout J.R. et al. β‑Alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids, 2015c, 47:1247–1257. *Jordan T., Lukaszuk J., Misic M., Umoren J. Effect Of Beta-alanine Supplementation On The Onset Of Blood Lactate Accumulation (OBLA) During Treadmill Running: Pre<references/post 2 Treatment Experimental Design. J. Int. Soc. Sports Nutr. 2010, 19:7:20.*Kendrick I.P., Harris R.C, Kim H.J. et al. The effects of 10 weeks of resistance training combined with b-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 2008, 34:547–554.*Kern B.D., Robinson T.L. Effects Of β-alanine Supplementation On Performance And Body Composition In Collegiate Wrestlers And Football Players. J. Strength Cond. Res. 2011, 25(7):1804-1815. *Klebanov G.I., Teselkin Yu. O., Babenkova I.V. et al. Effect of carnosine and its components on free-radical reactions. Membr Cell Biol. 1998, 12(1):89–99.*Ko R., Low Dog T., Gorecki D.K. et al. Evidence-based evaluation of potential benefits and safety of beta-alanine supplementation for military personnel. Nutr. Rev. 2014, 72:217–225.*Russo M.B., Arnett M.V., Thomas M.L., Caldwell J.A. Ethical use of cogniceuticals in the militaries of democratic nations. Am. J. Bioeth. 2008, 8:39–49*Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010, 39(2):321–333.*Sale C., Saunders B., Hudson S. et al. Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med. Sci. Sports Exerc. 2011, 43(10):1972–1978.*Severin S.E., Kirzon M.V., Kaftanova T.M. Effect of carnosine and anserine on action of isolated frog muscles. Dokl. Akad. Nauk SSSR.1953, 91(3):691–694.*Smith A.E., Walter A.A., Graef J.L. et al. Effects of b-alanine supplementation and high intensity interval training on endurance performance and body composition in men; a double blind trial. J. Int. Soc. Sports Nutr. 2009a, 6:5.*Smith A.E., Moon J.R., Kendall K.L. et al. The effect of b-alanine supplementation and high-intensity interval training on neuromuscular fatigue and muscle function. Eur. J. Appl. Physiol. 2009b,105:357–363.*Stout J.R., Cramer J.T., Mielke M. et al. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J.Strength Cond. Res. 2006, 20(4): 928–931.*Stout J.R., Cramer J.T., Zoeller R.F. et al. Effects Of Beta-alanine Supplementation On The Onset Of Neuromuscular Fatigue And Ventilatory Threshold In Women. Amino Acids. 2007, 32(3):381-386. *Stout J.R., Graves B.S., Smith A.E. et al. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. 2008, J. Int. Soc. Sports Nutr. 5:21*Sweeney K.M., Wright G.A., Glenn B.A., Doberstein S.T. The Effect Of Beta-alanine Supplementation On Power Performance During Repeated Sprint Activity. J. Strength Cond. Res. 2010, 24(1): 79-87. *Tiedje K.E., Stevens K., Barnes, S., Weaver D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int. 2010, 57, 177–188*Tomonaga S., Yamane H., Onitsuka E. et al. Carnosine-induced anti-depressant-like activity in rats. Pharmacol. Biochem. Behav. 2008, 89:627–632.*Van Thienen R., Van Proeyen K., Vanden Eynde B. et al. b-alanine improves sprint performance in endurance cycling. Med. Sci. Sports Exerc. 2009,41:898–903*Walter A.A., Smith A.E., Kendall K.L. et al. Six weeks of high-intensity interval training with and without b-alanine supplementation for improving cardiovascular fitness in women. J. Strength Cond. Res. 2010, 24:1199–1207.*Zoeller R.F., Stout J.R., O’kroy J.A. et al. Effects Of 28 Days Of Beta-alanine And Creatine Monohydrate Supplementation On Aerobic Power, Ventilatory And Lactate Thresholds, And Time To Exhaustion. Amino Acids. 2007, 33(3):505-510. >
[[Категория:Спортивное_питание]]
1759
правок

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция