700
правок
Изменения
Новая страница: «== Реабсорбция органических веществ == Image:Naglydnay_fiziologiya152.jpg|250px|thumb|right|А. Реабсорбция глюко…»
== Реабсорбция органических веществ ==
[[Image:Naglydnay_fiziologiya152.jpg|250px|thumb|right|А. Реабсорбция глюкозы и аминокислот]]
'''Фильтрационная нагрузка вещества''' - произведение концентрации этого вещества в плазме на [[Клубочковая фильтрация и клиренс|скорость клубочковой фильтрации (СКФ)]]. Поскольку СКФ высокая (примерно 180 л в сутки], каждые сутки в первичную мочу выходят огромные количества разных веществ (например, 160 г D-глюкозы в сутки).
Фракция экскреции (ФЭ) D-глюкозы очень мала (» 0,4%). Практически полная ее реабсорбция достигается при помощи вторичного активного транспорта (симпорт Na<sup>+</sup>-глюкозы) в клеточной мембране с люминальной стороны канальца (Б). Примерно 95% этой активности проявляется в проксимальных канальцах.
[[Image:Naglydnay_fiziologiya153.jpg|200px|thumb|right|Б. Реабсорбция органических -веществ]]
Если концентрация глюкозы в плазме превышает 10-15 ммоль/л, как при сахарном диабете (норма 5 ммоль/л), то развивается глюкозурия, и концентрация глюкозы в моче растет (А). Реабсорбция глюкозы демонстрирует кинетику насыщения (кинетика Михаэлиса-Ментен). Приведенный выше пример иллюстрирует преренальную глюкозурию. Почечная глюкозурия может развиваться, если один из канальцевых транспортеров глюкозы имеет дефекты.
За реабсорбцию глюкозы отвечают переносчики (транспортеры) с низким сродством в клеточной мембране просвета извитых канальцев (транспортер Na<sup>+</sup>-глюкозы 2-го типа, SGLT2) и переносчики с высоким сродством в прямых канальцах (SGLT1). В обоих случаях это достигается за счет котранспорта D-глю-козы и Na<sup>+</sup>, при соотношении 1:1 в случае SGLT2 и 1:2 в случае SGLT1. Энергия для данного типа вторичного активного транспорта глюкозы поставляется электрохимическим градиентом Na<sup>+</sup>, направленным во внутреннее пространство клетки. Поскольку SGLT1 осуществляет котранспорт 2Na<sup>+</sup> на одну молекулу глюкозы, градиент для этого транспортера в 2 раза больше градиента для SGLT2. Унипортер GLUT2 (транспортер глюкозы 2-го типа) со стороны кровотока облегчает пассивный транспорт аккумулированной внутриклеточной глюкозы из клетки [облегченная диффузия). D-галактоза также использует SGLT1-транспортер, тогда как D-фруктоза пассивно абсорбируется клетками канальцев (GLUT5).
Плазма содержит более 25 [[Аминокислоты|аминокислот]], и ежедневно фильтруется около 70 г аминокислот. Аналогично D-глюкозе, большинство L-аминокислот реабсорбируется в клетках проксимальных канальцев путем Na<sup>+</sup>-сопряженного вторичного активного транспорта (Б). В проксимальных канальцах находятся по крайней мере 7 переносчиков аминокислот, и некоторые из них транспортируют одинаковые аминокислоты. Jmax и Км и, следовательно, растворимость и способность к реабсорбции варьируют в зависимости от типа аминокислоты и переносчика. Фракция экскреции большинства аминокислот составляет примерно 1% (от 0,1% для L-валина до 6% для L-гистидина).
Иногда развивается повышенная экскреция аминокислот с мочой (гипераминоацидурия). Предпочечна ипераминоацидурия происходит при повышении концентрации аминокислот в плазме (и при выходе реабсорбции на плато насыщения, как на А), а причиной почечной гипераминоацидурии является недостаточный транспорт. Такая дисфункция может быть специфической (например, цистинурия, когда повышенной экскреции подвергаются только L-[[цистеин]], L-[[аргинин]] и L-лизин) или неспецифической (например, синдром Фанкони, когда повышенной экскреции подвергаются не только аминокислоты, но также глюкоза, фосфаты, бикарбонаты и т. д.).
Некоторые вещества (лактат, сульфат, фосфат, дикарбоксилаты и т. д.) тоже реабсорбируются в проксимальных канальцах путем Na cимпорта, тогда как мочевина подлежит пассивной обратной диффузии.
И ураты, и оксалаты реабсорбируются и секретируются, причем для урата преобладает реабсорбция (ФЗ » 0,1), а для оксалата - секреция (ФЭ > 1). Если концентрация в моче этих слаборастворимых веществ поднимается выше нормы, то они начинают осаждаться (увеличивается риск образования мочевых камней). Подобным же образом повышенная экскреция цистеина может вести к образованию цистеиновых камней.
[[Image:Naglydnay_fiziologiya154.jpg|200px|thumb|right|В. Реабсорбция олигопептидов]]
Олигопептиды, такие как глутатион и ангиотензин II, так быстро расщепляются люминальными пептидазами на щеточной каемке, что могут реабсорбироваться в качестве свободных аминокислот (В1). Дипептиды (например, карнозин), устойчивые к гидролизу в просвете канальца, должны абсорбироваться как интактные молекулы. Симпорт-переносчик (РерТ2), приводимый в действие направленным внутрь градиентом ионов Н<sup>+</sup>, транспортирует молекулы в клетку (третичный активный Н<sup>+</sup>-симпорт). Затем внутри клетки дипептиды гидролизуются (В2). Переносчик РерТ2 также используется некоторыми лекарствами и токсинами.
[[Image:Naglydnay_fiziologiya155.jpg|200px|thumb|right|Г. Реабсорбция белков путем эндоцитоза]]
'''Белки'''. Хотя альбумин имеет низкий коэффициент фильтрации (0,0003), в сутки фильтруется 2400 мг альбумина при его концентрации в плазме 45 г/л (180 д/суг • 45 г/л • 0,0003 = 2400 мг/сут). При этом за сутки экскретируется только от 2 до 35 мг альбумина (ФЭ » 1%). В проксимальных канальцах альбумин, лизоцим, а1-микроглобулин, β2-микроглобулин и другие белки реабсорбируются путем рецепторопосредованного эндоцитоза и «перевариваются» лизосомами (Г).
Поскольку этот тип реабсорбции при нормальных фильтрационных нагрузках по белкам происходит почти на плато насыщения, повышенная концентрация белка в плазме или повышенный коэффициент фильтрации белка ведет к протеинурии.
25-ОН<sup>-</sup>холекальциферол, связанный в плазме и в клубочковом фильтрате с D-СБ (витамин D-связывающим белком), реабсорбируется (в комбинации с D-СБ) путем рецепторопосредованного эндоцитоза.
== Реабсорбция Na<sup>+</sup> и Cl<sup>-</sup> ==
[[Image:Naglydnay_fiziologiya158.jpg|250px|thumb|right|А. Электрохимический градиент Na]]
Примерно 99% фильтруемого Na<sup>+</sup> реабсорбируется (—27 000 ммоль/сут), т. е. фракция экскреции Na<sup>+</sup> (ФЭNa<sup>+</sup>) составляет около 1%. ФЭNa<sup>+</sup> (от 0,5 до 5%) регулируется альдостероном, атриопептином и другими гормонами (Б9).
'''Участки реабсорбции Na<sup>+</sup>'''. Реабсорбция происходит во всех частях почечных канальцев и собирательной трубочки. Примерно 65% фильтруемого Na<sup>+</sup> реабсорбируется в проксимальном канальце, при постоянной концентрации Na<sup>+</sup> в просвете. Еще 25% реабсорбируются в петле Генле, где концентрация Na<sup>+</sup> в просвете резко снижается. Дистальные извитые канальцы и собирательная трубочка также реабсорбируют Na<sup>+</sup>. Собирательная трубочка является участком тонкой гормональной регуляции экскреции Na<sup>+</sup>.
[[Image:Naglydnay_fiziologiya159.jpg|250px|thumb|right|Б. Реабсорбция Na<sup>+</sup> и CI]]
'''Механизмы реабсорбции Na<sup>+</sup>'''. Na<sup>+</sup>-К<sup>+</sup>-АТФаза откачивает ионы Na<sup>+</sup> из клетки, при этом проводя ионы К<sup>+</sup> в клетку (А); таким образом создается химический градиент Na<sup>+</sup> (А4). Обратная диффузия К<sup>+</sup> (АЗ) ведет к формированию мембранного потенциала (А4). Суммарный результат -высокий электрохимический градиент Na<sup>+</sup>, который обеспечивает движущую силу для пассивного входа Na<sup>+</sup> и имеет свои особенности в разных сегментах нефрона (Б).
*В проксимальных канальцах ионы Na<sup>+</sup> пассивно диффундируют из просвета канальцев внутрь клеток посредством: (а) электронейтрального Na<sup>+</sup>/Н<sup>+</sup>-обменника 3-го типа (NHE3), переносчика - Na<sup>+</sup>/H+-антипорта для электронейтрального обмена Na<sup>+</sup> на Н<sup>+</sup> (Б1); (б) различных переносчиков Na<sup>+</sup>-симпорта для реабсорбции D-глюкозы и т. д. (Б1). Поскольку большинство этих переносчиков сим-порта электрогенны, клеточная мембрана просвета канальцев поляризована и на ней образуется ранний проксимальный люмен-отрицательный трансэпителиальный потенциал (ЛОТП).
*В толстом сегменте восходящего колена (ТСВК) петли Генле (Б6) Na<sup>+</sup> реабсорбируется при помощи буметанидчувствительного котранспортера BSC, Na<sup>+</sup>-K+ -2СГ-симпортера. Хотя BSC преимущественно электронейтрален, абсорбированный К<sup>+</sup> рециркулирует назад в просвет канальца через К<sup>+</sup>-канал. Это гиперполяризует мембрану просвета канальца, что приводит к образованию на ней люмен-положительного трансэпителиального потенциала (ЛПТП).
*В дистальном извитом канальце (ДИК) (Б8) Na<sup>+</sup> реабсорбируется при помощи триазидчувствительного котранспортера TSC, электронейтрального Ма+-Cl<sup>-</sup>-симпортера.
*В главных клетках соединительных канальцев и собирательной трубочки (Б9) Na<sup>+</sup> выходит из просвета через Na<sup>+</sup>-каналы, активируемые альдостероном и антидиуретическим гормоном (АДГ) и ингибируемые простагландином и атриопептином.
Поскольку эти четыре стадии пассивного транспорта Na<sup>+</sup> в люминальной мембране последовательно соединены с активным транспортом Na<sup>+</sup> в базолатеральной мембране (Na<sup>+</sup>-К<sup>+</sup>-АТФаза), связанная с этим трансэпителиальная реабсорбция Na<sup>+</sup> также происходит активно. Она составляет около 1/з от общей реабсорбции Na<sup>+</sup> в проксимальных канальцах, и на 3 абсорбированных иона Na<sup>+</sup> потребляется 1 молекула АТФ. Остальные 2/3 от общей реабсорбции Na<sup>+</sup> обусловлены пассивным и парацеллюлярным транспортом.
За этот процесс отвечают две движущие силы: (1) ЛПТП в средней и дальней части проксимальных канальцев (Б5) и петле Генле (Б7) проводит Na<sup>+</sup> и другие катионы на эпителий со стороны кровотока; (2) захват растворителем: когда реабсорбируется вода, то растворенные вещества «захватываются» благодаря силе трения (как кусок древесины дрейфует вместе с потоком воды). Поскольку движущие силы (1) и (2) - непрямые результаты активности Na<sup>+</sup>-К<sup>+</sup>-АТФазы, энергетический баланс возрастает примерно до 9 ионов Na<sup>+</sup> на 1 молекулу АТФ в проксимальных канальцах (и до 5 Na<sup>+</sup> на молекулу АТФ в остальных отделах почек).
На базолатеральной стороне ионы Na<sup>+</sup> покидают клетку проксимального канальца при помощи Na<sup>+</sup>-К<sup>+</sup>-АТФазы и переносчика, осуществляющего симпорт Na<sup>+</sup>—ЗHCO<sub>3</sub>. В последнем случае Na<sup>+</sup> покидает клетку за счет третичного активного транспорта, тогда как вторичная активная секреция Н<sup>+</sup> (на противоположной стороне клетки) приводит к внутриклеточной аккумуляции ионов HCO<sub>3</sub>.
Фракция экскреции CI (ФЗСl) колеблется от 0,5 до 5%. Примерно 50% всей реабсорбции Сl~ происходит в проксимальных канальцах. Ранний проксимальный ЛВТП проводит Cl через парацеллюляр-ные пространства из просвета канальца (БЗ). Реабсорбция Cl<sup>-</sup> отстает по сравнению с реабсорбцией Na<sup>+</sup> и Н2О, и концентрация Cl<sup>-</sup> в просвете возрастает. В результате Cl начинает диффундировать парацеллюлярно по своему химическому градиенту вдоль средней и дальней части проксимального канальца (Б4), таким образом создавая ЛПТП (обращение потенциала, Б5). В тонком сегменте нисходящего колена (ТСНК) и дистальном извитом канальце (ДИК) Cl<sup>-</sup> входит в клетку путем вторичного активного транспорта и выходит пассивно через активируемые АДГ базолатеральные Cl<sup>-</sup>-каналы (Б6, 8).
== Механизм концентрирования мочи ==
Клубочковый фильтр пропускает около 180 л жидкости (плазмы) ежедневно (СКФ). По сравнению с этим количеством выход мочи в норме (VU) относительно мал (от 0,5 до 2 л/сут). Отклонения от нормы называются антидиурезом (низкая скорость VU) или диурезом (высокая скорость VU). Выход мочи выше уровня нормы называется полиурией, а ниже уровня нормы - олигоурией (< 0,5 л/сут) или анурией (< 0,1 л/сут). Осмоляльность плазмы и клубочкового фильтрата составляет около 290 мОсм/кг HgO (= Posm)', а осмоляльность вторичной мочи Wosm) колеблется от 50 (гипотоническая моча при увеличенном водном диурезе) до 1200 мОсм/кг НдО (гипертоническая моча с максимальной концентрацией). При водном диурезе происходит экскреция больших объемов воды без одновременной потери NaCI и других растворенных веществ, поэтому эта патология известна как «экскреция свободной воды» или «свободный водный клиренс» (СН2O). Это позволяет почке, например, нормализовать снижение осмоляльности плазмы. СН2O - объем воды, который теоретически может быть экстрагирован, чтобы моча достигла той же осмоляльности, что и плазма:
СН2O = VU(1 - Uosm/Posm). [7.11]
== Системы противотока ==
[[Image:Naglydnay_fiziologiya160.jpg|250px|thumb|right|А. Противоточная система]]
Простой теплообменик (А1) состоит из двух трубок, в которых текут параллельные (в одном направлении) потоки воды, один холодный (О °С), а другой - горячий (100 °С). Благодаря теплообмену выходящая из обеих трубок вода будет иметь температуру около 50 °С, т. е. компенсируется начальный большой температурный градиент в 100 °С.
В противоточиом теплообменнике (А2) жидкость в трубках течет в противоположных направлениях. Поскольку градиент температуры присутствует вдоль всей длины трубок, теплообмен происходит также по всей длине трубок. В обмене могут участвовать также молекулы растворенных веществ, если стенки трубок проницаемы для них и если для данного вещества существует градиент концентрации.
Если теплообмен происходит в противоточной системе в трубке в виде петли (шпильки), перегиб которой находится в контакте со средой, а температура этой среды отличается от температуры внутри трубки теплообменника (лед, АЗ), жидкость, выходящая из трубки, скоро будет немного холоднее, чем входящая в трубку, поскольку тепло всегда передается от более теплого колена петли к более холодному.
Противоточный обмен воды в прямом сосуде в мозговом веществе почек (А6) происходит в том случае, если гипертоничность мозгового 170 вещества увеличивается по отношению к сосочкам (см. ниже) и если прямой сосуд проницаем для воды. Часть воды диффундирует путем осмоса из нисходящего прямого сосуда к восходящему, таким образом обходя внутренний слой мозгового вещества (А4). Вблизи почечных сосочков концентрация всех компонентов крови возрастает благодаря экстракции воды. Осмоляльность плазмы в прямом канальце при этом непрерывно изменяется, стремясь к осмоляльности интерстиция, осмоляльность которого увеличивается по направлению к сосочкам. Ге-матокрит в прямом сосуде также возрастает. И наоборот, вещества, переходящие в кровь в мозговом веществе почек, диффундируют из восходящего прямого сосуда в нисходящий участок при условии, что стенки обоих сосудов проницаемы для них (например, для мочевины: В). Противоточный обмен в прямом сосуде обеспечивает необходимый приток крови к мозговому веществу почек, не изменяя в значительной степени высокой осмоляльности мозгового вещества и не ухудшая концентрационной емкости почек.
В противоточиом усилителе, таком как петля Гейле, градиент концентрации между двумя коленами поддерживается с затратой энергии (А5). Противоток усиливает относительно небольшой градиент во всех точках между коленами (локальный градиент —200 мОсм/кг НдО) до достаточно высокого градиента вдоль колена петли (—1000 мОсм/кг Н2О). Чем длиннее петля и чем выше градиент в одном колене, тем больше усиление градиента. Кроме того, он обратно пропорционален квадрату скорости потока в петле.
== Реабсорбция воды ==
[[Image:Naglydnay_fiziologiya161.jpg|250px|thumb|right|Б. Реабсорбция и экскреция воды]]
Примерно 65% СКФ обусловлено реабсорбцией в проксимальных извитых канальцах (ПИК) (Б). Движущая сила этого процесса - реабсорбция растворенных веществ, особенно Na<sup>+</sup> и Cl<sup>-</sup> Это немного разбавляет мочу в канальце, но Н2О немедленно следует по этому осмотическому градиенту, поскольку ПИК «протекают». Реабсорбция воды происходит парацеллюлярно (через протекающие плотные контакты) или трансцеллюлярно, т. е. через водные каналы (аквапорины типа 1 = AQP1) в двух клеточных мембранах. Моча в ПИК, таким образом, остается практически изотонической. Онкотическое давление в перитубулярных капиллярах обеспечивает дополнительную движущую силу для реабсорбции воды. Чем больше воды фильтруется в клубочках, тем выше онкотическое давление. Таким образом, реабсорбция воды в проксимальных канальцах до определенной степени выравнивается в соответствии с клубочково-канальцевый равновесием (ККР).
Поскольку нисходящее колено петли Генле содержит аквапорины CAQP1), которые делают его проницаемым для воды, моча в нем в основном находится в осмотическом балансе с гипертоническим межклеточным пространством, которое становится все более гипертоническим при приближении к сосочкам (А5). Моча, таким образом, при продвижении в этом направлении становится все более концентрированной. В тонком сегменте нисходящего колена, которое мало проницаемо для солей, это приводит к увеличению концентрации Na<sup>+</sup> и Cl<sup>-</sup>. Большая часть воды из межклеточного пространства удаляется по прямому канальцу (Б). Поскольку тонкий и толстый сегменты восходящего колена петли Генле почти непроницаемы для воды, Na<sup>+</sup> и Cl<sup>-</sup> диффундируютпассивно (тонкий сегмент), но транспортируются активно (толстый сегмент) наружу, в межклеточную жидкость (Б). Вода не может быть удалена, и поэтому моча, выходящая из петли Генле, гипотонична.
Активная реабсорбция Na<sup>+</sup> и Cl<sup>-</sup> из тонкого сегмента восходящего колена петли Генле (ТСВК) создает локальный градиент (примерно 200 мОсм/кг H<sub>2</sub>O; А5) во всех точках между ТСВК нисходящей петли с одной стороны и внеклеточной жидкостью мозгового вещества почек - с другой. Поскольку высокая осмоляльность внеклеточной жидкости мозгового вещества почек является причиной, по которой вода экстрагируется из собирательной трубочки (см. ниже), активный транспорт NaCI является АТФ-зависимым «мотором» почечного механизма, концентрирующего мочу, и регулируется постоянной стимуляцией секреции АДГ.
[[Image:Naglydnay_fiziologiya162.jpg|250px|thumb|right|В. Мочевина в почках]]
По ходу дистальных извитых канальцев и в конце собирательной трубочки, где есть аквапорины и рецепторы АДГ типа V2 (см. ниже), жидкость в канальцах снова становится изотонической (в осмотическом равновесии с изотонической внеклеточной жидкостью коры почек), если присутствует АДГ, т. е. при антидиурезе. Хотя Na<sup>+</sup> и Cl<sup>-</sup> здесь все еще реабсорбируются, осмоляльность значительно не меняется, так как вода реабсорбируется (примерно 5% от СКФ) во внеклеточную жидкость под действием осмотического давления и осмоляльность канальцевой жидкости все больше определяет мочевина.
Конечная корректировка объема выводящейся мочи происходит в собирательной трубочке. В присутствии антидиуретического гормона (АДГ) (который связывается с базолатеральными Уд-рецепторами, названными так по названию гормона, АДГ = вазопрессин), аквапорины (AQP2) люминальной мембраны главных клеток (в отсутствие аквапоринов водонепроницаемой) экстрагируют воду из мочи, проходящей через все более гипертоническое мозговое вещество почек. Таким образом, Uosm возрастает и становится примерно в 4 раза выше, чем Posm Uosm/Posm = 4), что соответствует максимальному антидиурезу. Отсутствие АДГ приводит к водному диурезу, когда Uosm/Posm может упасть вплоть до < 0,3. К концу ТСВК Uosm может упасть даже ниже осмоляльности, поскольку реабсорбция Na<sup>+</sup> и Cl<sup>-</sup> продолжается в дистальном извитом канальце и собирательной трубочке, но вода вряд ли может за ними следовать.
[[Мочевина]] также играет важную роль в формировании концентрированной мочи. Богатая белком диета приводит к увеличению образования мочевины, что увеличивает способность почек концентрировать мочу. Примерно 50% фильтрованной мочи покидает проксимальные канальцы путем диффузии (В). Поскольку нисходящее колено петли Генле, дистальный извитой каналец, а также кортикальный и внешний мозговой участки собирательной трубочки лишь незначительно проницаемы для мочи, ее концентрация увеличивается ниже этих частей нефрона ( В). АДГ может (при помощи Уд-рецепторов) вводить переносчики мочевины (транспортер мочевины 1-го типа, UT1) в люминальную мембрану, таким образом делая собирательную трубочку во внутреннем слое мозгового вещества проницаемой для мочевины. Мочевина теперь диффундирует назад в межклеточное пространство (при высокой осмоляльности половина приходится на мочевину) с помощью UT1 и затем с помощью UT2 транспортируется назад в нисходящее колено петли Генле, завершая рециркуляцию мочевины (В). Нереабсорбируемая фракция мочевины экскретируется: ФЭмочевины = 40%. Экскреция мочевины увеличивается при водном диурезе и снижается при антидиурезе, вероятно, по причине активации переносчика UT2.
Нарушения процесса концентрирования мочи в основном происходят (а) из-за очень высокого кровотока в мозговом веществе почек (вымывание Na<sup>+</sup>, Cl<sup>-</sup> и мочевины); (б) при приеме [[Осмотические диуретики|осмотических диуретиков]]; (в) при приеме [[Петлевые диуретики|петлевых диуретиков]]; (г) дефиците секреции или неэффективности АДГ, как при центральном или нефрогенном несахарном диабете соответственно.
== Реабсорбция и экскреция фосфата, Са<sup>2+</sup> и Мg<sup>2+</sup> ==
[[Image:Naglydnay_fiziologiya176.jpg|250px|thumb|right|А. Реабсорбция фосфата, Са<sup>2+</sup> и Мg<sup>2+</sup> ]]
=== Метаболизм фосфатов ===
Концентрация [[Фосфаты|фосфатов]] в плазме обычно находится в диапазоне 0,8-1,4 ммоль/л. Каждый день фильтруется соответствующее количество неорганического фосфата Фн (НР042-⇆ Н2PO4-) (примерно 150-250 ммоль/суг), и большая его часть реабсорбируется. Фракция экскреции (А1), которая колеблется между 5 и 20%, необходима для поддержания баланса Фн, Н + и Са<sup>2+</sup>. Экскреция Фн возрастает при избытке Фн (повышенный уровень Фн в плазме) и падает при дефиците Фн. К фосфатурии и увеличению экскреции Н<sup>+</sup> также приводит ацидоз (титруемая кислотность). Это происходит и при фосфатурии от других причин. Гипокальциемия и паратиреоидный гормон (паратгормон) тоже индуцируют увеличение экскреции Фн (АЗ).
Фн реабсорбируется в проксимальных канальцах (А2, 3). Мембрана их просвета содержит 3-й тип 3Na<sup>+</sup>-Фн-симпортера (NaPi-З). Этот переносчик связывает ионы НР042- и Н2РО4 и котранспортирует их путем вторичного активного транспорта.
=== Регуляция реабсорбции Фн ===
Дефицит Фн, алкалоз, [[Гиперкальциемия - лечение|гиперкальциемия]] и низкий уровень [[Паратиреоидин (паратгормон)|паратгормона]] приводят к усиленному включению транспортера NaPi-З в мембрану просвета, тогда как избыток Фн, ацидоз, [[Гипокальциемия (недостаток кальция) - лечение|гипокальциемия]] и увеличенная секреция паратгормона приводят (по отрицательной обратной связи) к интернализации и последующему расщеплению NaPi-З в лизосомах (АЗ).
=== Метаболизм кальция ===
В отличие от метаболизма Na<sup>+</sup> [[Кальциевый обмен|метаболизм кальция]] регулируется в основном путем абсорбции Са<sup>2+</sup> в желудке и, во вторую очередь, путем почечной экскреции. Общий [[кальций]] плазмы (связанный кальций + ионизованный кальций) в среднем составляет 2,5 ммоль/л. Примерно 1,3 ммоль/л кальция присутствует как свободный, ионизованный Са?+, 0,2 ммоль/л образует комплексы с фосфатом, цитратом и т. д., а остальные 1 ммоль/л связаны с белками плазмы и, следовательно, не подлежат клубочковой фильтрации. Фракция экскреции Са<sup>2+</sup> (ФЭСа в моче - 0,5-3% (А1).
Реабсорбция Са<sup>2+</sup> происходит почти по всему нефрону (А1, 2). Реабсорбция фильтрованного Са<sup>2+</sup> примерно на 60% происходит в проксимальных канальцах, на 30% - в толстом сегменте восходящего колена (ТСВК) петли Генле, и является парацеллюлярной, т. е. пассивной (А4а). В основном движущая сила для этого вида активности обеспечивается люмен-положительным трансэпителиальным потенциалом (ЛПТП). Поскольку реабсорбция Са<sup>2+</sup> в ТСВК зависит от реабсорбции NaCI, петлевые диуретики ингибируют реабсорбцию Са<sup>2+</sup>. Всасывание Са<sup>2+</sup> в ТСВК обеспечивает паратгормон, так же как и в дистальных извитых канальцах, где Са<sup>2+</sup> реабсорбируется при помощи трансцеллюлярного активного транспорта (А4б). Таким образом, приток Са<sup>2+</sup> в клетку является пассивным процессом и происходит при помощи Са2*-каналов просвета, а отток Са<sup>2+</sup> - активный процесс и осуществляется посредством Са<sup>2+</sup>-АТФазы (первичный активный транспорт Са<sup>2+</sup>) и 3Na<sup>+</sup>-1Са<sup>2+</sup>-антипорта (вторичный активный транспорт Са<sup>2+</sup>). Ацидоз ингибирует реабсорбцию Са<sup>2+</sup> неизвестными пока механизмами.
Мочевые камни обычно состоят из фосфата кальция или оксалата кальция. Когда увеличиваются концентрации Са<sup>2+</sup>, Фн или оксалата, может достигаться произведение растворимости фосфорных и оксалатных солей кальция; обычно же лиганды, образующие с кальцием комплексы (например, цитрат), и ингибиторы кристаллизации (например, нефрокальцин) допускают некоторую степень пересыщения. Образование камней может произойти при дефиците этих веществ, или если в моче присутствует очень высокая концентрация Са<sup>2+</sup>. Фн или оксалата (применимо ко всем трем при ярко выраженном антидиурезе).
=== Метаболизм магния и реабсорбция ===
Поскольку часть [[Магний|магния]] в плазме связана с белками (0,7-1,2 ммоль/л), концентрация магния в фильтрате составляет только 80% его концентрации в плазме. Фракция экскреции Мg<sup>2+</sup> (ФЭмд) составляет 3-8% (А1,2). Однако в отличие от Са<sup>2+</sup>, только 15% фильтрованных ионов Мg<sup>2+</sup> покидают проксимальные канальцы. Около 70% Мg<sup>2+</sup> подлежит парацеллюлярной реабсорбции в ТСВК (А4). Другие 10% Мg<sup>2+</sup> всасываются трансцеллюлярно в дистальных канальцах (А4б), вероятнее всего как Са<sup>2+</sup> (см. ранее).
Экскреция Мдг+ стимулируется гипермагнезиемией, гиперкальциемией, гиперволемией и петлевыми диуретиками, а ингибируется дефицитом Мg<sup>2+</sup>. Дефицит Са<sup>2+</sup>, дефицит объема, а также паратгормон и другие гормоны в основном оказывают влияние в ТСВК.
Почки содержат рецепторы для двухвалентных катионов, таких как Са<sup>2+</sup> и Мg<sup>2+</sup>. При активации рецепторы в ТСВК ингибируют реабсорбцию NaCI, который, как и петлевые диуретики, уменьшает движущую силу парацеллюлярной резорбции катионов, таким образом уменьшая в норме активное всасывание Мg<sup>2+</sup>.
== Баланс калия ==
[[Image:Naglydnay_fiziologiya177.jpg|250px|thumb|right|А. Регуляция внеклеточной концентрации К<sup>+</sup>]]
Потребление К<sup>+</sup> с пищей составляет примерно 100 ммоль/сут (минимальное потребление 25 ммоль/сут). Примерно 90% К<sup>+</sup> выводится с мочой и 10% - с фекалиями. Концентрация К<sup>+</sup> в плазме крови в норме колеблется от 3,5 до 4,8 ммоль/л, тогда как внутриклеточная концентрация К<sup>+</sup> может быть более чем в 30 раз выше (из-за активности Na<sup>+</sup>-К<sup>+</sup>-АТФазы; А). Таким образом, около 98% из 3000 ммоль ионов К<sup>+</sup> в организме присутствует в клетке. Хотя внеклеточная концентрация К<sup>+</sup> составляет только 2% от общего К<sup>+</sup> организма, она тем не менее очень важна, потому что (а) необходима для регуляции гомеостаза К<sup>+</sup> и (б) относительно небольшие изменения в клеточном К<sup>+</sup> (приток или отток) могут вести к значительным изменениям в концентрации К<sup>+</sup> в плазме (и связанному с этим риску сердечной аритмии). Регуляция гомеостаза К<sup>+</sup>, следовательно, подразумевает распределение К<sup>+</sup> во внутриклеточных и внеклеточных компартментах и баланс выведения К<sup>+</sup> и его потребления.
[[Image:Naglydnay_fiziologiya178.jpg|250px|thumb|right|Б. Резорбция и секреция К<sup>+</sup> в почках]]
Срочная регуляция внеклеточной концентрации К<sup>+</sup> достигается путем внутреннего смещения концентрации К<sup>+</sup> между внеклеточной и внутриклеточной жидкостью (А). Этот относительно быстрый процесс предотвращает или смягчает опасные повышения внеклеточного К<sup>+</sup> (гиперкалиемия) в тех случаях, когда присутствуют большие количества К<sup>+</sup> из-за его потребления с пищей или внутриклеточного высвобождения К<sup>+</sup> (например, при внезапном гемолизе). Данные сдвиги в концентрации К<sup>+</sup> в основном подлежат гормональной регуляции. Инсулин, который выделяется после еды, стимулирует Na<sup>+</sup>-К<sup>+</sup>-АТФазу и распределяет К<sup>+</sup>, поступивший с растительной или животной пищей, по клеткам тела. Данный тип регуляции используется также при гиперкалиемии, не связанной с питанием: сама по себе гиперкалиемия вызывает секрецию инсулина. Адреналин подобным же образом увеличивает потребление К<sup>+</sup> клетками, которые задействованы при мышечной работе и при травме - двух причинах, ведущих к увеличению К<sup>+</sup> в плазме крови. В обоих случаях повышенный уровень адреналина способствует поглощению К<sup>+</sup> в этих и других клетках. Увеличение внутриклеточной концентрации К<sup>+</sup> вызывает также альдостерон (см. далее).
[[Image:Naglydnay_fiziologiya179.jpg|250px|thumb|right|В. Факторы, действующие на секрецию и экскрецию К<sup>+</sup>]]
Изменения pH тоже влияют на внутриклеточное и внеклеточное распространение К<sup>+</sup> (А). Это происходит в основном по той причине, что широко распространенный Na<sup>+</sup>-К<sup>+</sup>-антипортер работает быстрее при алкалозе, чем при ацидозе (А). Следовательно, при ацидозе вход Na<sup>+</sup> уменьшается, работа Na<sup>+</sup>-К<sup>+</sup>-АТФазы замедляется и внеклеточная концентрация К<sup>+</sup> возрастает (особенно при нереспираторном ацидозе; на 0,6 ммоль/л на 0,1 единицы изменения pH). Алкалоз приводит к гипокалиемии.
Постоянная регуляция гомеостаза К<sup>+</sup> в основном осуществляется почками (Б). К<sup>+</sup> подлежит свободной клубочковой фильтрации, и большая часть фильтруемого К<sup>+</sup> обычно реабсорбируется [общая реабсорбция). Экскретируемое количество в некоторых случаях может превышать фильтруемое (общая секреция, см. далее). Около 65% фильтрованного К<sup>+</sup> обычно реабсорбируется ранее конца проксимальных канальцев, независимо от запасов К<sup>+</sup>. Это сравнимо с процентом реабсорбции Na<sup>+</sup> и Н2О (Б1). Ионы К<sup>+</sup> транспортируются в основном парацеллюлярно, т. е. пассивно. Движущими силами этого процесса являются захват растворенного вещества и положительный на люминальной стороне трансэпителиальный потенциал, ЛПТП (Б1) в среднем и конечном сегментах проксимальных канальцев. В петле Генле еще 15% фильтрованного К<sup>+</sup> реабсорбируется парацеллюлярно и параэпителиально (Б2). В соединительных канальцах и собирательной трубочке можно определить количество экскретируемого К<sup>+</sup>. Затем, в зависимости от потребностей, большие или меньшие количества К<sup>+</sup> или реабсорбируются, или секретируются. В экстремальных случаях в ответ на высокий уровень поглощения К<sup>+</sup> фракционная экскреция К<sup>+</sup> (ФЭk) может возрастать более чем на 100% или при дефиците К<sup>+</sup> падать примерно на 3-5% (Б).
[[Image:Naglydnay_fiziologiya180.jpg|250px|thumb|right|Г. Секреция, действие и деградация альдостерона]]
Клеточные механизмы почечного транспорта К<sup>+</sup>. Соединительные канальцы и собирательная трубочка содержат главные клетки (БЗ), которые реабсорбируют Na<sup>+</sup> и секретируют К<sup>+</sup>. Аккумулированный внутриклеточный К<sup>+</sup> может выходить из клеток через К<sup>+</sup> -каналы с любой стороны клетки. Решающее значение для оттока К<sup>+</sup> через мембрану имеет электрохимический градиент. Мембрана просвета главных клеток также содержит Na<sup>+</sup>-каналы, через которые Na<sup>+</sup> входит в клетку. Это деполяризует мембрану просвета, потенциал на которой достигает примерно -20 мВ, в то время как базолатеральная мембрана поддерживает свой нормальный потенциал величиной примерно -70 мВ (БЗ). Движущая сила оттока К<sup>+</sup> (Em - Ek), следовательно, выше на стороне просвета. Таким образом, К<sup>+</sup> покидает клетку предпочтительно в направлении просвета [секреция). Это является основной причиной того, что секреция К<sup>+</sup> сопряжена с всасыванием Na<sup>+</sup>, т. е. чем больше Na<sup>+</sup> реабсорбируется главными клетками, тем больше секретируется К<sup>+</sup>.
Другая видимая причина заключается в том, что связанное с всасыванием увеличение внутриклеточной концентрации Na<sup>+</sup> снижает движущую силу обмена 3Na<sup>+</sup>/Са<sup>2+</sup> на базолатеральной мембране, что приводит к увеличению концентрации Са<sup>2+</sup> в цитозоле. Это повышение действует как сигнал для более частого открывания К<sup>+</sup>-каналов просвета.
Добавочные клетки типа А (Б4) в дополнение к секреции ионов Н<sup>+</sup> могут активно реабсорбировать К<sup>+</sup>. Для этой цели люминальная мембрана этих клеток, как и у париетальных (обкладочных) клеток желудка, содержит Н<sup>+</sup>/К<sup>+</sup>-АТФазу.
Факторы, влияющие на экскрецию К<sup>+</sup> (В):
*Увеличенное потребление К<sup>+</sup> повышает внутриклеточную концентрацию К<sup>+</sup> и его концентрацию в плазме крови, что, в свою очередь, увеличивает химическую движущую силу для секреции К<sup>+</sup>.
*[[PH крови: кислотно-щелочное равновесие|pH крови]]: внутриклеточная концентрация К<sup>+</sup> в клетках почек увеличивается при алкалозе и падает при остром ацидозе. Это ведет к одновременному падению экскреции К<sup>+</sup>, которая опять возрастает при хроническом ацидозе. Причинами этого является то, что (а) ацидоз-зависимое ингибирование Na<sup>+</sup>-К<sup>+</sup>-АТФазы уменьшает проксимальную реабсорбцию Na<sup>+</sup>, что приводит к увеличенному дистальному оттоку мочи, и (б) результирующая гиперкалиемия стимулирует секрецию альдостерона (см. п. 4).
*Если существует увеличенный отток мочи в соединительных канальцах и собирательной трубочке (например, по причине большой реабсорбции Na<sup>+</sup>, осмотического диуреза или других факторов, ингибирующих реабсорбцию Na<sup>+</sup>), то будут экскретироваться большие количества К<sup>+</sup>. Этим объясняется эффект потери калия при употреблении некоторых диуретиков. Причиной данного эффекта, возможно, является ограничение секреции К<sup>+</sup> при определенной концентрации этого иона в просвете. Следовательно, чем больше сотношение объем/время, тем больше К<sup>+</sup> удаляется со временем.
*[[Альдостерон]] ведет к удержанию Na<sup>+</sup>, увеличению клеточного объема, умеренному усилению секреции Н<sup>+</sup> (росту клеточного pH) и повышенной экскреции К<sup>+</sup>. Это также увеличивает количество молекул 1Na<sup>+</sup>-К<sup>+</sup>-АТФазы в клетках-мишенях и ведет к хроническому увеличению плотности митохондрий при адаптации к повышенному содержанию К<sup>+</sup> (см. далее).
Клеточные механизмы эффектов альдостерона. Усиленное обратное всасывание достигается путем увеличения синтеза транспортных белков, называемых альдостерОН<sup>-</sup>ин-дуцируемыми белками. Этот генетически обусловленный эффект начинается примерно через 30-60 мин после введения или секреции альдостерона. Максимальный эффект наступает через несколько часов. Альдостерон увеличивает реабсорбцию Na<sup>+</sup>, деполяризуя мембрану просвета (БЗ). Вслед за этим он увеличивает движущую силу секреции К<sup>+</sup> и проводимость К<sup>+</sup> путем увеличения pH клетки. Оба эти эффекта ведут к увеличению выведения К<sup>+</sup>. Кроме того, альдостерон имеет очень быстрый (от нескольких секунд до нескольких минут] не связанный с генетикой эффект на клеточную мембрану, физиологическая значимость которого еще должна быть исследована.
Емкость К<sup>+</sup>-выводящего механизма возрастает в ответ на длительное увеличение притока К<sup>+</sup> (К<sup>+</sup>-адаптация) Даже когда работа почек нарушена, этот механизм в основном способен поддерживать баланс К<sup>+</sup> в оставшихся интактных частях канальцевого аппарата. Взять на себя выведение более чем 1/3 общего количества К<sup>+</sup> может также прямая кишка.
'''Минералокортико(стеро)иды'''. Альдостерон - зто наиболее распространенный минералокортикоидный гормон, синтезирующийся и секретирующийся в гломерулярной (клубочковой) зоне коры надпочечников (Г). Как и другие стероидные гормоны, альдостерон не хранится, а образуется при необходимости. Основная функция альдостерона состоит в регуляции транспорта Na<sup>+</sup> и К<sup>+</sup> в почках, желудке и других органах (Г). Секреция альдостерона возрастает в ответ на (а) падение объема крови и кровяного давления (опосредованное ангиотензином II) и (б) гиперкалиемию (Г). Синтез альдостерона ингибируется атриопептином.
Нормальная концентрация кортизола не влияет на рецепторы альдостерона только потому, что кортизол превращается в кортизон 11 бета-гидроксистероид-оксидоредуктазой в клетках-мишенях альдостерона.
'''Гиперальдостеронизм''' может быть либо первичным (секретирующие альдостерон опухоли в коре надпочечников, что наблюдается при синдроме Конна), либо вторичным (при уменьшении объема жидкости). Удержание Na<sup>+</sup> приводит к большому объему внеклеточного пространства и повышенному кровяному давлению с одновременными потерями К<sup>+</sup> и, как следствие, гипокалиемическому алкалозу. Когда более чем 90% коры надпочечников разрушено, например, по причине аутоиммунного воспаления надпочечников, метастазирующего рака или туберкулеза, развивается первичная хроническая недостаточность коры надпочечников (болезнь Аддисона). Дефицит альдостерона ведет к резкому увеличению экскреции Na<sup>+</sup>, что приводит к гиповолемии, гипотензии и удерживанию К<sup>+</sup> (гиперкалиемии). Когда одновременно развивается также дефицит глюкокортикоидов, осложнения могут быть опасны для жизни, особенно при серьезных инфекциях и травмах. Если разрушена только одна железа, АКТГ вызывает гипертрофию другой.
Тубулогломерулярная обратная связь, ренин-ангиотензиновая система Юкстагломерулярный аппарат (ЮГА) состоит из (а) юкстагломерулярных клеток приносящей артериолы (включая ренинсодержащие и симпатически иннервируемые гранулярные клетки) и выносящей артериолы, (б) клеток плотного пятна толстого сегмента восходящего колена петли Генле и (в) юкстагломерулярных мезангиальных клеток (полкиссен, А) нефрона (А).
'''Функции ЮГА''': (1) локальное проведение тубулогло-мерулярной обратной связи (механизм саморегуляции) в своем собственном нефроне при помощи ангиотензина II (ATII) и (2) системная продукция ангиотензина II как части ренин-ангиотензиновой системы (РАС).
Тубулогломерулярная обратная связь (механизм саморегуляции). Поскольку через почки ежедневно проходит в 10 раз больше жидкости, чем общий объем внеклеточной жидкости, выведение воды и соли должно точно соответствовать их поглощению. Резкие изменения в СКФ отдельного нефрона (СФН) и количества NaCI, фильтруемого в единицу времени, могут происходить по нескольким причинам. Повышение значения СФН ассоциируется с риском того, что дистальные механизмы реабсорбции NaCI перегружены, и слишком много NaCI и НгО будет потеряно с мочой. Заниженный показатель СФН означает, что слишком много NaCI и НдО удерживается. Степень реабсорбции NaCI и Н2О в проксимальных канальцах определяет, как быстро канальцевая моча проходит по петле Генле. Когда меньшее количество абсорбируется в верхней части, моча быстрее проходит по толстому сегменту восходящего колена петли, что приводит к уменьшению степени разбавления мочи и большей концентрации NaCI в плотном пятне, [NaCI]MD. Если величина [NaCI]MD становится слишком большой, гладкие мышцы стенки приносящей артериолы сокращаются, чтобы не изменилась СКФ через данный нефрон в течение 10 с, и наоборот (отрицательная обратная связь). Механизм регуляции неясен, но рецепторы ангиотензина II типа 1А (АТ1A) играют в этом ведущую роль.
Однако, если изменения [NaCI]MD обусловлены хроническими изменениями общего количества NaCI в организме и связанными с этим изменениями объема внеклеточной жидкости через механизм саморегуляции (обратной связи), нарушения зависимости СФН от [NaCI]MD могут иметь фатальные последствия. Поскольку увеличение в течение длительного времени объема внеклеточной жидкости уменьшает реабсорбцию NaCI в проксимальных канальцах, [NaCl]MD будет возрастать, приводя к снижению СКФ и дальнейшему увеличению объема внеклеточной жидкости. В обратной ситуации объем внеклеточной жидкости уменьшается. Для предотвращения таких эффектов зависимость [NaCl]MD/СФН может быть смещена в соответствующем направлении с помощью определенных веществ. Оксид азота (N0) смещает кривую при увеличении объема внеклеточной жидкости (увеличение СФН при прежнем значении [NaCI]MD), а (только локально эффективный) ангиотензин II сдвигает кривую в противоположном направлении при уменьшении объема.
[[Image:Naglydnay_fiziologiya181.jpg|250px|thumb|right|А. Юкстагломерулярный аппарат]]
'''Ренин-ангиотензиновая система (РАС)'''. Если среднее артериальное давление в почках внезапно падает ниже 90 мм рт. ст., почечные барорецепторы запускают высвобождение ренина, таким образом увеличивая общую концентрацию ренина в плазме. Ренин - это пептидаза, которая катализирует отщепление ангиотензина от субстрата ренина ангио-тензиногена (выделяемого печенью). Примерно через 30-60 мин после падения артериального давления ангиотензинпревращающий фермент (АПФ), который синтезируется в легких и других органах, отщепляет две аминокислоты от ангиотензина I с образованием ангиотензина II (Б).
[[Image:Naglydnay_fiziologiya182.jpg|250px|thumb|right|Б. Ренин-ангиотензиновая система (РАС)]]
'''Регуляция РАС (Б)'''. Порог артериального давления для высвобождения ренина увеличивается при помощи а1-адренорецепторов, а базальная секреция ренина увеличивается при помощи бета1-адренорецепторов. Ангиотензин II и альдостерон являются наиболее важными эффекторами РАС. Ангиотензин II стимулирует высвобождение альдостерона корой надпочечников (см. далее). Оба гормона прямо (срочное действие) или косвенно (отложенное действие) ведут к новому увеличению артериального давления (Б), и высвобождение ренина, таким образом, снижается до нормы. Кроме того, оба гормона ингибируют высвобождение ренина (отрицательная обратная связь).
Если средний кровоток снижается только в одной почке (например, в результате стеноза поврежденной почечной артерии), то поврежденная почка начинает высвобождать больше ренина, что, в свою очередь, приводит к почечной гипертензии в остальной системе кровообращения.
'''Эффекты ангиотензина II'''. Помимо действия на миокард и кровеносные сосуды (в основном посредством АТд-рецепторов), ангиотензин II имеет следующие срочные или отложенные эффекты, опосредованные рецепторами АТ1 (А).
*[[Физиология сердца и сердечно-сосудистой системы|Сосуды]]. Ангиотензин II имеет потенциальное вазоконст-рикторное и гипертензивное действие, что (посредством эндотелина) влияет на артериолы (срочное действие).
*[[Центральная нервная система|ЦНС]]. Ангиотензин II оказывает действие на гипоталамус, что приводит (через циркуляторный центр) к вазоконст-рикции (быстрое действие). Он также увеличивает секрецию АДГ в гипоталамусе, что стимулирует жажду и потребность в соли (отложенное действие).
*[[Почки]]. Ангиотензин II играет основную роль в регуляции почечного кровообращения и СКФ путем сужения приносящих и/или выносящих артериол (отложенное действие, ср. саморегуляция). Он прямо стимулирует реабсорбцию Na<sup>+</sup> в проксимальных канальцах (отложенное действие).
*[[Надпочечники]]. Ангиотензин II стимулирует синтез альдостерона в коре надпочечников (отложенное действие) и ведет к высвобождению адреналина в мозговом веществе надпочечников (срочное действие).
== Читайте также ==
*[[Почки]]
*[[Анатомия почки]]
*[[Почки как орган выделения]]
*[[Функции почек]]
*[[Кислотно-щелочной баланс ]]
*[[Клубочковая фильтрация и клиренс]]
*[[Транспорт в нефроне]]
*[[Гомеостаз жидкостей организма]]
*[[Почечная недостаточность и спорт (тренировки с одной почкой)]]
[[Image:Naglydnay_fiziologiya152.jpg|250px|thumb|right|А. Реабсорбция глюкозы и аминокислот]]
'''Фильтрационная нагрузка вещества''' - произведение концентрации этого вещества в плазме на [[Клубочковая фильтрация и клиренс|скорость клубочковой фильтрации (СКФ)]]. Поскольку СКФ высокая (примерно 180 л в сутки], каждые сутки в первичную мочу выходят огромные количества разных веществ (например, 160 г D-глюкозы в сутки).
Фракция экскреции (ФЭ) D-глюкозы очень мала (» 0,4%). Практически полная ее реабсорбция достигается при помощи вторичного активного транспорта (симпорт Na<sup>+</sup>-глюкозы) в клеточной мембране с люминальной стороны канальца (Б). Примерно 95% этой активности проявляется в проксимальных канальцах.
[[Image:Naglydnay_fiziologiya153.jpg|200px|thumb|right|Б. Реабсорбция органических -веществ]]
Если концентрация глюкозы в плазме превышает 10-15 ммоль/л, как при сахарном диабете (норма 5 ммоль/л), то развивается глюкозурия, и концентрация глюкозы в моче растет (А). Реабсорбция глюкозы демонстрирует кинетику насыщения (кинетика Михаэлиса-Ментен). Приведенный выше пример иллюстрирует преренальную глюкозурию. Почечная глюкозурия может развиваться, если один из канальцевых транспортеров глюкозы имеет дефекты.
За реабсорбцию глюкозы отвечают переносчики (транспортеры) с низким сродством в клеточной мембране просвета извитых канальцев (транспортер Na<sup>+</sup>-глюкозы 2-го типа, SGLT2) и переносчики с высоким сродством в прямых канальцах (SGLT1). В обоих случаях это достигается за счет котранспорта D-глю-козы и Na<sup>+</sup>, при соотношении 1:1 в случае SGLT2 и 1:2 в случае SGLT1. Энергия для данного типа вторичного активного транспорта глюкозы поставляется электрохимическим градиентом Na<sup>+</sup>, направленным во внутреннее пространство клетки. Поскольку SGLT1 осуществляет котранспорт 2Na<sup>+</sup> на одну молекулу глюкозы, градиент для этого транспортера в 2 раза больше градиента для SGLT2. Унипортер GLUT2 (транспортер глюкозы 2-го типа) со стороны кровотока облегчает пассивный транспорт аккумулированной внутриклеточной глюкозы из клетки [облегченная диффузия). D-галактоза также использует SGLT1-транспортер, тогда как D-фруктоза пассивно абсорбируется клетками канальцев (GLUT5).
Плазма содержит более 25 [[Аминокислоты|аминокислот]], и ежедневно фильтруется около 70 г аминокислот. Аналогично D-глюкозе, большинство L-аминокислот реабсорбируется в клетках проксимальных канальцев путем Na<sup>+</sup>-сопряженного вторичного активного транспорта (Б). В проксимальных канальцах находятся по крайней мере 7 переносчиков аминокислот, и некоторые из них транспортируют одинаковые аминокислоты. Jmax и Км и, следовательно, растворимость и способность к реабсорбции варьируют в зависимости от типа аминокислоты и переносчика. Фракция экскреции большинства аминокислот составляет примерно 1% (от 0,1% для L-валина до 6% для L-гистидина).
Иногда развивается повышенная экскреция аминокислот с мочой (гипераминоацидурия). Предпочечна ипераминоацидурия происходит при повышении концентрации аминокислот в плазме (и при выходе реабсорбции на плато насыщения, как на А), а причиной почечной гипераминоацидурии является недостаточный транспорт. Такая дисфункция может быть специфической (например, цистинурия, когда повышенной экскреции подвергаются только L-[[цистеин]], L-[[аргинин]] и L-лизин) или неспецифической (например, синдром Фанкони, когда повышенной экскреции подвергаются не только аминокислоты, но также глюкоза, фосфаты, бикарбонаты и т. д.).
Некоторые вещества (лактат, сульфат, фосфат, дикарбоксилаты и т. д.) тоже реабсорбируются в проксимальных канальцах путем Na cимпорта, тогда как мочевина подлежит пассивной обратной диффузии.
И ураты, и оксалаты реабсорбируются и секретируются, причем для урата преобладает реабсорбция (ФЗ » 0,1), а для оксалата - секреция (ФЭ > 1). Если концентрация в моче этих слаборастворимых веществ поднимается выше нормы, то они начинают осаждаться (увеличивается риск образования мочевых камней). Подобным же образом повышенная экскреция цистеина может вести к образованию цистеиновых камней.
[[Image:Naglydnay_fiziologiya154.jpg|200px|thumb|right|В. Реабсорбция олигопептидов]]
Олигопептиды, такие как глутатион и ангиотензин II, так быстро расщепляются люминальными пептидазами на щеточной каемке, что могут реабсорбироваться в качестве свободных аминокислот (В1). Дипептиды (например, карнозин), устойчивые к гидролизу в просвете канальца, должны абсорбироваться как интактные молекулы. Симпорт-переносчик (РерТ2), приводимый в действие направленным внутрь градиентом ионов Н<sup>+</sup>, транспортирует молекулы в клетку (третичный активный Н<sup>+</sup>-симпорт). Затем внутри клетки дипептиды гидролизуются (В2). Переносчик РерТ2 также используется некоторыми лекарствами и токсинами.
[[Image:Naglydnay_fiziologiya155.jpg|200px|thumb|right|Г. Реабсорбция белков путем эндоцитоза]]
'''Белки'''. Хотя альбумин имеет низкий коэффициент фильтрации (0,0003), в сутки фильтруется 2400 мг альбумина при его концентрации в плазме 45 г/л (180 д/суг • 45 г/л • 0,0003 = 2400 мг/сут). При этом за сутки экскретируется только от 2 до 35 мг альбумина (ФЭ » 1%). В проксимальных канальцах альбумин, лизоцим, а1-микроглобулин, β2-микроглобулин и другие белки реабсорбируются путем рецепторопосредованного эндоцитоза и «перевариваются» лизосомами (Г).
Поскольку этот тип реабсорбции при нормальных фильтрационных нагрузках по белкам происходит почти на плато насыщения, повышенная концентрация белка в плазме или повышенный коэффициент фильтрации белка ведет к протеинурии.
25-ОН<sup>-</sup>холекальциферол, связанный в плазме и в клубочковом фильтрате с D-СБ (витамин D-связывающим белком), реабсорбируется (в комбинации с D-СБ) путем рецепторопосредованного эндоцитоза.
== Реабсорбция Na<sup>+</sup> и Cl<sup>-</sup> ==
[[Image:Naglydnay_fiziologiya158.jpg|250px|thumb|right|А. Электрохимический градиент Na]]
Примерно 99% фильтруемого Na<sup>+</sup> реабсорбируется (—27 000 ммоль/сут), т. е. фракция экскреции Na<sup>+</sup> (ФЭNa<sup>+</sup>) составляет около 1%. ФЭNa<sup>+</sup> (от 0,5 до 5%) регулируется альдостероном, атриопептином и другими гормонами (Б9).
'''Участки реабсорбции Na<sup>+</sup>'''. Реабсорбция происходит во всех частях почечных канальцев и собирательной трубочки. Примерно 65% фильтруемого Na<sup>+</sup> реабсорбируется в проксимальном канальце, при постоянной концентрации Na<sup>+</sup> в просвете. Еще 25% реабсорбируются в петле Генле, где концентрация Na<sup>+</sup> в просвете резко снижается. Дистальные извитые канальцы и собирательная трубочка также реабсорбируют Na<sup>+</sup>. Собирательная трубочка является участком тонкой гормональной регуляции экскреции Na<sup>+</sup>.
[[Image:Naglydnay_fiziologiya159.jpg|250px|thumb|right|Б. Реабсорбция Na<sup>+</sup> и CI]]
'''Механизмы реабсорбции Na<sup>+</sup>'''. Na<sup>+</sup>-К<sup>+</sup>-АТФаза откачивает ионы Na<sup>+</sup> из клетки, при этом проводя ионы К<sup>+</sup> в клетку (А); таким образом создается химический градиент Na<sup>+</sup> (А4). Обратная диффузия К<sup>+</sup> (АЗ) ведет к формированию мембранного потенциала (А4). Суммарный результат -высокий электрохимический градиент Na<sup>+</sup>, который обеспечивает движущую силу для пассивного входа Na<sup>+</sup> и имеет свои особенности в разных сегментах нефрона (Б).
*В проксимальных канальцах ионы Na<sup>+</sup> пассивно диффундируют из просвета канальцев внутрь клеток посредством: (а) электронейтрального Na<sup>+</sup>/Н<sup>+</sup>-обменника 3-го типа (NHE3), переносчика - Na<sup>+</sup>/H+-антипорта для электронейтрального обмена Na<sup>+</sup> на Н<sup>+</sup> (Б1); (б) различных переносчиков Na<sup>+</sup>-симпорта для реабсорбции D-глюкозы и т. д. (Б1). Поскольку большинство этих переносчиков сим-порта электрогенны, клеточная мембрана просвета канальцев поляризована и на ней образуется ранний проксимальный люмен-отрицательный трансэпителиальный потенциал (ЛОТП).
*В толстом сегменте восходящего колена (ТСВК) петли Генле (Б6) Na<sup>+</sup> реабсорбируется при помощи буметанидчувствительного котранспортера BSC, Na<sup>+</sup>-K+ -2СГ-симпортера. Хотя BSC преимущественно электронейтрален, абсорбированный К<sup>+</sup> рециркулирует назад в просвет канальца через К<sup>+</sup>-канал. Это гиперполяризует мембрану просвета канальца, что приводит к образованию на ней люмен-положительного трансэпителиального потенциала (ЛПТП).
*В дистальном извитом канальце (ДИК) (Б8) Na<sup>+</sup> реабсорбируется при помощи триазидчувствительного котранспортера TSC, электронейтрального Ма+-Cl<sup>-</sup>-симпортера.
*В главных клетках соединительных канальцев и собирательной трубочки (Б9) Na<sup>+</sup> выходит из просвета через Na<sup>+</sup>-каналы, активируемые альдостероном и антидиуретическим гормоном (АДГ) и ингибируемые простагландином и атриопептином.
Поскольку эти четыре стадии пассивного транспорта Na<sup>+</sup> в люминальной мембране последовательно соединены с активным транспортом Na<sup>+</sup> в базолатеральной мембране (Na<sup>+</sup>-К<sup>+</sup>-АТФаза), связанная с этим трансэпителиальная реабсорбция Na<sup>+</sup> также происходит активно. Она составляет около 1/з от общей реабсорбции Na<sup>+</sup> в проксимальных канальцах, и на 3 абсорбированных иона Na<sup>+</sup> потребляется 1 молекула АТФ. Остальные 2/3 от общей реабсорбции Na<sup>+</sup> обусловлены пассивным и парацеллюлярным транспортом.
За этот процесс отвечают две движущие силы: (1) ЛПТП в средней и дальней части проксимальных канальцев (Б5) и петле Генле (Б7) проводит Na<sup>+</sup> и другие катионы на эпителий со стороны кровотока; (2) захват растворителем: когда реабсорбируется вода, то растворенные вещества «захватываются» благодаря силе трения (как кусок древесины дрейфует вместе с потоком воды). Поскольку движущие силы (1) и (2) - непрямые результаты активности Na<sup>+</sup>-К<sup>+</sup>-АТФазы, энергетический баланс возрастает примерно до 9 ионов Na<sup>+</sup> на 1 молекулу АТФ в проксимальных канальцах (и до 5 Na<sup>+</sup> на молекулу АТФ в остальных отделах почек).
На базолатеральной стороне ионы Na<sup>+</sup> покидают клетку проксимального канальца при помощи Na<sup>+</sup>-К<sup>+</sup>-АТФазы и переносчика, осуществляющего симпорт Na<sup>+</sup>—ЗHCO<sub>3</sub>. В последнем случае Na<sup>+</sup> покидает клетку за счет третичного активного транспорта, тогда как вторичная активная секреция Н<sup>+</sup> (на противоположной стороне клетки) приводит к внутриклеточной аккумуляции ионов HCO<sub>3</sub>.
Фракция экскреции CI (ФЗСl) колеблется от 0,5 до 5%. Примерно 50% всей реабсорбции Сl~ происходит в проксимальных канальцах. Ранний проксимальный ЛВТП проводит Cl через парацеллюляр-ные пространства из просвета канальца (БЗ). Реабсорбция Cl<sup>-</sup> отстает по сравнению с реабсорбцией Na<sup>+</sup> и Н2О, и концентрация Cl<sup>-</sup> в просвете возрастает. В результате Cl начинает диффундировать парацеллюлярно по своему химическому градиенту вдоль средней и дальней части проксимального канальца (Б4), таким образом создавая ЛПТП (обращение потенциала, Б5). В тонком сегменте нисходящего колена (ТСНК) и дистальном извитом канальце (ДИК) Cl<sup>-</sup> входит в клетку путем вторичного активного транспорта и выходит пассивно через активируемые АДГ базолатеральные Cl<sup>-</sup>-каналы (Б6, 8).
== Механизм концентрирования мочи ==
Клубочковый фильтр пропускает около 180 л жидкости (плазмы) ежедневно (СКФ). По сравнению с этим количеством выход мочи в норме (VU) относительно мал (от 0,5 до 2 л/сут). Отклонения от нормы называются антидиурезом (низкая скорость VU) или диурезом (высокая скорость VU). Выход мочи выше уровня нормы называется полиурией, а ниже уровня нормы - олигоурией (< 0,5 л/сут) или анурией (< 0,1 л/сут). Осмоляльность плазмы и клубочкового фильтрата составляет около 290 мОсм/кг HgO (= Posm)', а осмоляльность вторичной мочи Wosm) колеблется от 50 (гипотоническая моча при увеличенном водном диурезе) до 1200 мОсм/кг НдО (гипертоническая моча с максимальной концентрацией). При водном диурезе происходит экскреция больших объемов воды без одновременной потери NaCI и других растворенных веществ, поэтому эта патология известна как «экскреция свободной воды» или «свободный водный клиренс» (СН2O). Это позволяет почке, например, нормализовать снижение осмоляльности плазмы. СН2O - объем воды, который теоретически может быть экстрагирован, чтобы моча достигла той же осмоляльности, что и плазма:
СН2O = VU(1 - Uosm/Posm). [7.11]
== Системы противотока ==
[[Image:Naglydnay_fiziologiya160.jpg|250px|thumb|right|А. Противоточная система]]
Простой теплообменик (А1) состоит из двух трубок, в которых текут параллельные (в одном направлении) потоки воды, один холодный (О °С), а другой - горячий (100 °С). Благодаря теплообмену выходящая из обеих трубок вода будет иметь температуру около 50 °С, т. е. компенсируется начальный большой температурный градиент в 100 °С.
В противоточиом теплообменнике (А2) жидкость в трубках течет в противоположных направлениях. Поскольку градиент температуры присутствует вдоль всей длины трубок, теплообмен происходит также по всей длине трубок. В обмене могут участвовать также молекулы растворенных веществ, если стенки трубок проницаемы для них и если для данного вещества существует градиент концентрации.
Если теплообмен происходит в противоточной системе в трубке в виде петли (шпильки), перегиб которой находится в контакте со средой, а температура этой среды отличается от температуры внутри трубки теплообменника (лед, АЗ), жидкость, выходящая из трубки, скоро будет немного холоднее, чем входящая в трубку, поскольку тепло всегда передается от более теплого колена петли к более холодному.
Противоточный обмен воды в прямом сосуде в мозговом веществе почек (А6) происходит в том случае, если гипертоничность мозгового 170 вещества увеличивается по отношению к сосочкам (см. ниже) и если прямой сосуд проницаем для воды. Часть воды диффундирует путем осмоса из нисходящего прямого сосуда к восходящему, таким образом обходя внутренний слой мозгового вещества (А4). Вблизи почечных сосочков концентрация всех компонентов крови возрастает благодаря экстракции воды. Осмоляльность плазмы в прямом канальце при этом непрерывно изменяется, стремясь к осмоляльности интерстиция, осмоляльность которого увеличивается по направлению к сосочкам. Ге-матокрит в прямом сосуде также возрастает. И наоборот, вещества, переходящие в кровь в мозговом веществе почек, диффундируют из восходящего прямого сосуда в нисходящий участок при условии, что стенки обоих сосудов проницаемы для них (например, для мочевины: В). Противоточный обмен в прямом сосуде обеспечивает необходимый приток крови к мозговому веществу почек, не изменяя в значительной степени высокой осмоляльности мозгового вещества и не ухудшая концентрационной емкости почек.
В противоточиом усилителе, таком как петля Гейле, градиент концентрации между двумя коленами поддерживается с затратой энергии (А5). Противоток усиливает относительно небольшой градиент во всех точках между коленами (локальный градиент —200 мОсм/кг НдО) до достаточно высокого градиента вдоль колена петли (—1000 мОсм/кг Н2О). Чем длиннее петля и чем выше градиент в одном колене, тем больше усиление градиента. Кроме того, он обратно пропорционален квадрату скорости потока в петле.
== Реабсорбция воды ==
[[Image:Naglydnay_fiziologiya161.jpg|250px|thumb|right|Б. Реабсорбция и экскреция воды]]
Примерно 65% СКФ обусловлено реабсорбцией в проксимальных извитых канальцах (ПИК) (Б). Движущая сила этого процесса - реабсорбция растворенных веществ, особенно Na<sup>+</sup> и Cl<sup>-</sup> Это немного разбавляет мочу в канальце, но Н2О немедленно следует по этому осмотическому градиенту, поскольку ПИК «протекают». Реабсорбция воды происходит парацеллюлярно (через протекающие плотные контакты) или трансцеллюлярно, т. е. через водные каналы (аквапорины типа 1 = AQP1) в двух клеточных мембранах. Моча в ПИК, таким образом, остается практически изотонической. Онкотическое давление в перитубулярных капиллярах обеспечивает дополнительную движущую силу для реабсорбции воды. Чем больше воды фильтруется в клубочках, тем выше онкотическое давление. Таким образом, реабсорбция воды в проксимальных канальцах до определенной степени выравнивается в соответствии с клубочково-канальцевый равновесием (ККР).
Поскольку нисходящее колено петли Генле содержит аквапорины CAQP1), которые делают его проницаемым для воды, моча в нем в основном находится в осмотическом балансе с гипертоническим межклеточным пространством, которое становится все более гипертоническим при приближении к сосочкам (А5). Моча, таким образом, при продвижении в этом направлении становится все более концентрированной. В тонком сегменте нисходящего колена, которое мало проницаемо для солей, это приводит к увеличению концентрации Na<sup>+</sup> и Cl<sup>-</sup>. Большая часть воды из межклеточного пространства удаляется по прямому канальцу (Б). Поскольку тонкий и толстый сегменты восходящего колена петли Генле почти непроницаемы для воды, Na<sup>+</sup> и Cl<sup>-</sup> диффундируютпассивно (тонкий сегмент), но транспортируются активно (толстый сегмент) наружу, в межклеточную жидкость (Б). Вода не может быть удалена, и поэтому моча, выходящая из петли Генле, гипотонична.
Активная реабсорбция Na<sup>+</sup> и Cl<sup>-</sup> из тонкого сегмента восходящего колена петли Генле (ТСВК) создает локальный градиент (примерно 200 мОсм/кг H<sub>2</sub>O; А5) во всех точках между ТСВК нисходящей петли с одной стороны и внеклеточной жидкостью мозгового вещества почек - с другой. Поскольку высокая осмоляльность внеклеточной жидкости мозгового вещества почек является причиной, по которой вода экстрагируется из собирательной трубочки (см. ниже), активный транспорт NaCI является АТФ-зависимым «мотором» почечного механизма, концентрирующего мочу, и регулируется постоянной стимуляцией секреции АДГ.
[[Image:Naglydnay_fiziologiya162.jpg|250px|thumb|right|В. Мочевина в почках]]
По ходу дистальных извитых канальцев и в конце собирательной трубочки, где есть аквапорины и рецепторы АДГ типа V2 (см. ниже), жидкость в канальцах снова становится изотонической (в осмотическом равновесии с изотонической внеклеточной жидкостью коры почек), если присутствует АДГ, т. е. при антидиурезе. Хотя Na<sup>+</sup> и Cl<sup>-</sup> здесь все еще реабсорбируются, осмоляльность значительно не меняется, так как вода реабсорбируется (примерно 5% от СКФ) во внеклеточную жидкость под действием осмотического давления и осмоляльность канальцевой жидкости все больше определяет мочевина.
Конечная корректировка объема выводящейся мочи происходит в собирательной трубочке. В присутствии антидиуретического гормона (АДГ) (который связывается с базолатеральными Уд-рецепторами, названными так по названию гормона, АДГ = вазопрессин), аквапорины (AQP2) люминальной мембраны главных клеток (в отсутствие аквапоринов водонепроницаемой) экстрагируют воду из мочи, проходящей через все более гипертоническое мозговое вещество почек. Таким образом, Uosm возрастает и становится примерно в 4 раза выше, чем Posm Uosm/Posm = 4), что соответствует максимальному антидиурезу. Отсутствие АДГ приводит к водному диурезу, когда Uosm/Posm может упасть вплоть до < 0,3. К концу ТСВК Uosm может упасть даже ниже осмоляльности, поскольку реабсорбция Na<sup>+</sup> и Cl<sup>-</sup> продолжается в дистальном извитом канальце и собирательной трубочке, но вода вряд ли может за ними следовать.
[[Мочевина]] также играет важную роль в формировании концентрированной мочи. Богатая белком диета приводит к увеличению образования мочевины, что увеличивает способность почек концентрировать мочу. Примерно 50% фильтрованной мочи покидает проксимальные канальцы путем диффузии (В). Поскольку нисходящее колено петли Генле, дистальный извитой каналец, а также кортикальный и внешний мозговой участки собирательной трубочки лишь незначительно проницаемы для мочи, ее концентрация увеличивается ниже этих частей нефрона ( В). АДГ может (при помощи Уд-рецепторов) вводить переносчики мочевины (транспортер мочевины 1-го типа, UT1) в люминальную мембрану, таким образом делая собирательную трубочку во внутреннем слое мозгового вещества проницаемой для мочевины. Мочевина теперь диффундирует назад в межклеточное пространство (при высокой осмоляльности половина приходится на мочевину) с помощью UT1 и затем с помощью UT2 транспортируется назад в нисходящее колено петли Генле, завершая рециркуляцию мочевины (В). Нереабсорбируемая фракция мочевины экскретируется: ФЭмочевины = 40%. Экскреция мочевины увеличивается при водном диурезе и снижается при антидиурезе, вероятно, по причине активации переносчика UT2.
Нарушения процесса концентрирования мочи в основном происходят (а) из-за очень высокого кровотока в мозговом веществе почек (вымывание Na<sup>+</sup>, Cl<sup>-</sup> и мочевины); (б) при приеме [[Осмотические диуретики|осмотических диуретиков]]; (в) при приеме [[Петлевые диуретики|петлевых диуретиков]]; (г) дефиците секреции или неэффективности АДГ, как при центральном или нефрогенном несахарном диабете соответственно.
== Реабсорбция и экскреция фосфата, Са<sup>2+</sup> и Мg<sup>2+</sup> ==
[[Image:Naglydnay_fiziologiya176.jpg|250px|thumb|right|А. Реабсорбция фосфата, Са<sup>2+</sup> и Мg<sup>2+</sup> ]]
=== Метаболизм фосфатов ===
Концентрация [[Фосфаты|фосфатов]] в плазме обычно находится в диапазоне 0,8-1,4 ммоль/л. Каждый день фильтруется соответствующее количество неорганического фосфата Фн (НР042-⇆ Н2PO4-) (примерно 150-250 ммоль/суг), и большая его часть реабсорбируется. Фракция экскреции (А1), которая колеблется между 5 и 20%, необходима для поддержания баланса Фн, Н + и Са<sup>2+</sup>. Экскреция Фн возрастает при избытке Фн (повышенный уровень Фн в плазме) и падает при дефиците Фн. К фосфатурии и увеличению экскреции Н<sup>+</sup> также приводит ацидоз (титруемая кислотность). Это происходит и при фосфатурии от других причин. Гипокальциемия и паратиреоидный гормон (паратгормон) тоже индуцируют увеличение экскреции Фн (АЗ).
Фн реабсорбируется в проксимальных канальцах (А2, 3). Мембрана их просвета содержит 3-й тип 3Na<sup>+</sup>-Фн-симпортера (NaPi-З). Этот переносчик связывает ионы НР042- и Н2РО4 и котранспортирует их путем вторичного активного транспорта.
=== Регуляция реабсорбции Фн ===
Дефицит Фн, алкалоз, [[Гиперкальциемия - лечение|гиперкальциемия]] и низкий уровень [[Паратиреоидин (паратгормон)|паратгормона]] приводят к усиленному включению транспортера NaPi-З в мембрану просвета, тогда как избыток Фн, ацидоз, [[Гипокальциемия (недостаток кальция) - лечение|гипокальциемия]] и увеличенная секреция паратгормона приводят (по отрицательной обратной связи) к интернализации и последующему расщеплению NaPi-З в лизосомах (АЗ).
=== Метаболизм кальция ===
В отличие от метаболизма Na<sup>+</sup> [[Кальциевый обмен|метаболизм кальция]] регулируется в основном путем абсорбции Са<sup>2+</sup> в желудке и, во вторую очередь, путем почечной экскреции. Общий [[кальций]] плазмы (связанный кальций + ионизованный кальций) в среднем составляет 2,5 ммоль/л. Примерно 1,3 ммоль/л кальция присутствует как свободный, ионизованный Са?+, 0,2 ммоль/л образует комплексы с фосфатом, цитратом и т. д., а остальные 1 ммоль/л связаны с белками плазмы и, следовательно, не подлежат клубочковой фильтрации. Фракция экскреции Са<sup>2+</sup> (ФЭСа в моче - 0,5-3% (А1).
Реабсорбция Са<sup>2+</sup> происходит почти по всему нефрону (А1, 2). Реабсорбция фильтрованного Са<sup>2+</sup> примерно на 60% происходит в проксимальных канальцах, на 30% - в толстом сегменте восходящего колена (ТСВК) петли Генле, и является парацеллюлярной, т. е. пассивной (А4а). В основном движущая сила для этого вида активности обеспечивается люмен-положительным трансэпителиальным потенциалом (ЛПТП). Поскольку реабсорбция Са<sup>2+</sup> в ТСВК зависит от реабсорбции NaCI, петлевые диуретики ингибируют реабсорбцию Са<sup>2+</sup>. Всасывание Са<sup>2+</sup> в ТСВК обеспечивает паратгормон, так же как и в дистальных извитых канальцах, где Са<sup>2+</sup> реабсорбируется при помощи трансцеллюлярного активного транспорта (А4б). Таким образом, приток Са<sup>2+</sup> в клетку является пассивным процессом и происходит при помощи Са2*-каналов просвета, а отток Са<sup>2+</sup> - активный процесс и осуществляется посредством Са<sup>2+</sup>-АТФазы (первичный активный транспорт Са<sup>2+</sup>) и 3Na<sup>+</sup>-1Са<sup>2+</sup>-антипорта (вторичный активный транспорт Са<sup>2+</sup>). Ацидоз ингибирует реабсорбцию Са<sup>2+</sup> неизвестными пока механизмами.
Мочевые камни обычно состоят из фосфата кальция или оксалата кальция. Когда увеличиваются концентрации Са<sup>2+</sup>, Фн или оксалата, может достигаться произведение растворимости фосфорных и оксалатных солей кальция; обычно же лиганды, образующие с кальцием комплексы (например, цитрат), и ингибиторы кристаллизации (например, нефрокальцин) допускают некоторую степень пересыщения. Образование камней может произойти при дефиците этих веществ, или если в моче присутствует очень высокая концентрация Са<sup>2+</sup>. Фн или оксалата (применимо ко всем трем при ярко выраженном антидиурезе).
=== Метаболизм магния и реабсорбция ===
Поскольку часть [[Магний|магния]] в плазме связана с белками (0,7-1,2 ммоль/л), концентрация магния в фильтрате составляет только 80% его концентрации в плазме. Фракция экскреции Мg<sup>2+</sup> (ФЭмд) составляет 3-8% (А1,2). Однако в отличие от Са<sup>2+</sup>, только 15% фильтрованных ионов Мg<sup>2+</sup> покидают проксимальные канальцы. Около 70% Мg<sup>2+</sup> подлежит парацеллюлярной реабсорбции в ТСВК (А4). Другие 10% Мg<sup>2+</sup> всасываются трансцеллюлярно в дистальных канальцах (А4б), вероятнее всего как Са<sup>2+</sup> (см. ранее).
Экскреция Мдг+ стимулируется гипермагнезиемией, гиперкальциемией, гиперволемией и петлевыми диуретиками, а ингибируется дефицитом Мg<sup>2+</sup>. Дефицит Са<sup>2+</sup>, дефицит объема, а также паратгормон и другие гормоны в основном оказывают влияние в ТСВК.
Почки содержат рецепторы для двухвалентных катионов, таких как Са<sup>2+</sup> и Мg<sup>2+</sup>. При активации рецепторы в ТСВК ингибируют реабсорбцию NaCI, который, как и петлевые диуретики, уменьшает движущую силу парацеллюлярной резорбции катионов, таким образом уменьшая в норме активное всасывание Мg<sup>2+</sup>.
== Баланс калия ==
[[Image:Naglydnay_fiziologiya177.jpg|250px|thumb|right|А. Регуляция внеклеточной концентрации К<sup>+</sup>]]
Потребление К<sup>+</sup> с пищей составляет примерно 100 ммоль/сут (минимальное потребление 25 ммоль/сут). Примерно 90% К<sup>+</sup> выводится с мочой и 10% - с фекалиями. Концентрация К<sup>+</sup> в плазме крови в норме колеблется от 3,5 до 4,8 ммоль/л, тогда как внутриклеточная концентрация К<sup>+</sup> может быть более чем в 30 раз выше (из-за активности Na<sup>+</sup>-К<sup>+</sup>-АТФазы; А). Таким образом, около 98% из 3000 ммоль ионов К<sup>+</sup> в организме присутствует в клетке. Хотя внеклеточная концентрация К<sup>+</sup> составляет только 2% от общего К<sup>+</sup> организма, она тем не менее очень важна, потому что (а) необходима для регуляции гомеостаза К<sup>+</sup> и (б) относительно небольшие изменения в клеточном К<sup>+</sup> (приток или отток) могут вести к значительным изменениям в концентрации К<sup>+</sup> в плазме (и связанному с этим риску сердечной аритмии). Регуляция гомеостаза К<sup>+</sup>, следовательно, подразумевает распределение К<sup>+</sup> во внутриклеточных и внеклеточных компартментах и баланс выведения К<sup>+</sup> и его потребления.
[[Image:Naglydnay_fiziologiya178.jpg|250px|thumb|right|Б. Резорбция и секреция К<sup>+</sup> в почках]]
Срочная регуляция внеклеточной концентрации К<sup>+</sup> достигается путем внутреннего смещения концентрации К<sup>+</sup> между внеклеточной и внутриклеточной жидкостью (А). Этот относительно быстрый процесс предотвращает или смягчает опасные повышения внеклеточного К<sup>+</sup> (гиперкалиемия) в тех случаях, когда присутствуют большие количества К<sup>+</sup> из-за его потребления с пищей или внутриклеточного высвобождения К<sup>+</sup> (например, при внезапном гемолизе). Данные сдвиги в концентрации К<sup>+</sup> в основном подлежат гормональной регуляции. Инсулин, который выделяется после еды, стимулирует Na<sup>+</sup>-К<sup>+</sup>-АТФазу и распределяет К<sup>+</sup>, поступивший с растительной или животной пищей, по клеткам тела. Данный тип регуляции используется также при гиперкалиемии, не связанной с питанием: сама по себе гиперкалиемия вызывает секрецию инсулина. Адреналин подобным же образом увеличивает потребление К<sup>+</sup> клетками, которые задействованы при мышечной работе и при травме - двух причинах, ведущих к увеличению К<sup>+</sup> в плазме крови. В обоих случаях повышенный уровень адреналина способствует поглощению К<sup>+</sup> в этих и других клетках. Увеличение внутриклеточной концентрации К<sup>+</sup> вызывает также альдостерон (см. далее).
[[Image:Naglydnay_fiziologiya179.jpg|250px|thumb|right|В. Факторы, действующие на секрецию и экскрецию К<sup>+</sup>]]
Изменения pH тоже влияют на внутриклеточное и внеклеточное распространение К<sup>+</sup> (А). Это происходит в основном по той причине, что широко распространенный Na<sup>+</sup>-К<sup>+</sup>-антипортер работает быстрее при алкалозе, чем при ацидозе (А). Следовательно, при ацидозе вход Na<sup>+</sup> уменьшается, работа Na<sup>+</sup>-К<sup>+</sup>-АТФазы замедляется и внеклеточная концентрация К<sup>+</sup> возрастает (особенно при нереспираторном ацидозе; на 0,6 ммоль/л на 0,1 единицы изменения pH). Алкалоз приводит к гипокалиемии.
Постоянная регуляция гомеостаза К<sup>+</sup> в основном осуществляется почками (Б). К<sup>+</sup> подлежит свободной клубочковой фильтрации, и большая часть фильтруемого К<sup>+</sup> обычно реабсорбируется [общая реабсорбция). Экскретируемое количество в некоторых случаях может превышать фильтруемое (общая секреция, см. далее). Около 65% фильтрованного К<sup>+</sup> обычно реабсорбируется ранее конца проксимальных канальцев, независимо от запасов К<sup>+</sup>. Это сравнимо с процентом реабсорбции Na<sup>+</sup> и Н2О (Б1). Ионы К<sup>+</sup> транспортируются в основном парацеллюлярно, т. е. пассивно. Движущими силами этого процесса являются захват растворенного вещества и положительный на люминальной стороне трансэпителиальный потенциал, ЛПТП (Б1) в среднем и конечном сегментах проксимальных канальцев. В петле Генле еще 15% фильтрованного К<sup>+</sup> реабсорбируется парацеллюлярно и параэпителиально (Б2). В соединительных канальцах и собирательной трубочке можно определить количество экскретируемого К<sup>+</sup>. Затем, в зависимости от потребностей, большие или меньшие количества К<sup>+</sup> или реабсорбируются, или секретируются. В экстремальных случаях в ответ на высокий уровень поглощения К<sup>+</sup> фракционная экскреция К<sup>+</sup> (ФЭk) может возрастать более чем на 100% или при дефиците К<sup>+</sup> падать примерно на 3-5% (Б).
[[Image:Naglydnay_fiziologiya180.jpg|250px|thumb|right|Г. Секреция, действие и деградация альдостерона]]
Клеточные механизмы почечного транспорта К<sup>+</sup>. Соединительные канальцы и собирательная трубочка содержат главные клетки (БЗ), которые реабсорбируют Na<sup>+</sup> и секретируют К<sup>+</sup>. Аккумулированный внутриклеточный К<sup>+</sup> может выходить из клеток через К<sup>+</sup> -каналы с любой стороны клетки. Решающее значение для оттока К<sup>+</sup> через мембрану имеет электрохимический градиент. Мембрана просвета главных клеток также содержит Na<sup>+</sup>-каналы, через которые Na<sup>+</sup> входит в клетку. Это деполяризует мембрану просвета, потенциал на которой достигает примерно -20 мВ, в то время как базолатеральная мембрана поддерживает свой нормальный потенциал величиной примерно -70 мВ (БЗ). Движущая сила оттока К<sup>+</sup> (Em - Ek), следовательно, выше на стороне просвета. Таким образом, К<sup>+</sup> покидает клетку предпочтительно в направлении просвета [секреция). Это является основной причиной того, что секреция К<sup>+</sup> сопряжена с всасыванием Na<sup>+</sup>, т. е. чем больше Na<sup>+</sup> реабсорбируется главными клетками, тем больше секретируется К<sup>+</sup>.
Другая видимая причина заключается в том, что связанное с всасыванием увеличение внутриклеточной концентрации Na<sup>+</sup> снижает движущую силу обмена 3Na<sup>+</sup>/Са<sup>2+</sup> на базолатеральной мембране, что приводит к увеличению концентрации Са<sup>2+</sup> в цитозоле. Это повышение действует как сигнал для более частого открывания К<sup>+</sup>-каналов просвета.
Добавочные клетки типа А (Б4) в дополнение к секреции ионов Н<sup>+</sup> могут активно реабсорбировать К<sup>+</sup>. Для этой цели люминальная мембрана этих клеток, как и у париетальных (обкладочных) клеток желудка, содержит Н<sup>+</sup>/К<sup>+</sup>-АТФазу.
Факторы, влияющие на экскрецию К<sup>+</sup> (В):
*Увеличенное потребление К<sup>+</sup> повышает внутриклеточную концентрацию К<sup>+</sup> и его концентрацию в плазме крови, что, в свою очередь, увеличивает химическую движущую силу для секреции К<sup>+</sup>.
*[[PH крови: кислотно-щелочное равновесие|pH крови]]: внутриклеточная концентрация К<sup>+</sup> в клетках почек увеличивается при алкалозе и падает при остром ацидозе. Это ведет к одновременному падению экскреции К<sup>+</sup>, которая опять возрастает при хроническом ацидозе. Причинами этого является то, что (а) ацидоз-зависимое ингибирование Na<sup>+</sup>-К<sup>+</sup>-АТФазы уменьшает проксимальную реабсорбцию Na<sup>+</sup>, что приводит к увеличенному дистальному оттоку мочи, и (б) результирующая гиперкалиемия стимулирует секрецию альдостерона (см. п. 4).
*Если существует увеличенный отток мочи в соединительных канальцах и собирательной трубочке (например, по причине большой реабсорбции Na<sup>+</sup>, осмотического диуреза или других факторов, ингибирующих реабсорбцию Na<sup>+</sup>), то будут экскретироваться большие количества К<sup>+</sup>. Этим объясняется эффект потери калия при употреблении некоторых диуретиков. Причиной данного эффекта, возможно, является ограничение секреции К<sup>+</sup> при определенной концентрации этого иона в просвете. Следовательно, чем больше сотношение объем/время, тем больше К<sup>+</sup> удаляется со временем.
*[[Альдостерон]] ведет к удержанию Na<sup>+</sup>, увеличению клеточного объема, умеренному усилению секреции Н<sup>+</sup> (росту клеточного pH) и повышенной экскреции К<sup>+</sup>. Это также увеличивает количество молекул 1Na<sup>+</sup>-К<sup>+</sup>-АТФазы в клетках-мишенях и ведет к хроническому увеличению плотности митохондрий при адаптации к повышенному содержанию К<sup>+</sup> (см. далее).
Клеточные механизмы эффектов альдостерона. Усиленное обратное всасывание достигается путем увеличения синтеза транспортных белков, называемых альдостерОН<sup>-</sup>ин-дуцируемыми белками. Этот генетически обусловленный эффект начинается примерно через 30-60 мин после введения или секреции альдостерона. Максимальный эффект наступает через несколько часов. Альдостерон увеличивает реабсорбцию Na<sup>+</sup>, деполяризуя мембрану просвета (БЗ). Вслед за этим он увеличивает движущую силу секреции К<sup>+</sup> и проводимость К<sup>+</sup> путем увеличения pH клетки. Оба эти эффекта ведут к увеличению выведения К<sup>+</sup>. Кроме того, альдостерон имеет очень быстрый (от нескольких секунд до нескольких минут] не связанный с генетикой эффект на клеточную мембрану, физиологическая значимость которого еще должна быть исследована.
Емкость К<sup>+</sup>-выводящего механизма возрастает в ответ на длительное увеличение притока К<sup>+</sup> (К<sup>+</sup>-адаптация) Даже когда работа почек нарушена, этот механизм в основном способен поддерживать баланс К<sup>+</sup> в оставшихся интактных частях канальцевого аппарата. Взять на себя выведение более чем 1/3 общего количества К<sup>+</sup> может также прямая кишка.
'''Минералокортико(стеро)иды'''. Альдостерон - зто наиболее распространенный минералокортикоидный гормон, синтезирующийся и секретирующийся в гломерулярной (клубочковой) зоне коры надпочечников (Г). Как и другие стероидные гормоны, альдостерон не хранится, а образуется при необходимости. Основная функция альдостерона состоит в регуляции транспорта Na<sup>+</sup> и К<sup>+</sup> в почках, желудке и других органах (Г). Секреция альдостерона возрастает в ответ на (а) падение объема крови и кровяного давления (опосредованное ангиотензином II) и (б) гиперкалиемию (Г). Синтез альдостерона ингибируется атриопептином.
Нормальная концентрация кортизола не влияет на рецепторы альдостерона только потому, что кортизол превращается в кортизон 11 бета-гидроксистероид-оксидоредуктазой в клетках-мишенях альдостерона.
'''Гиперальдостеронизм''' может быть либо первичным (секретирующие альдостерон опухоли в коре надпочечников, что наблюдается при синдроме Конна), либо вторичным (при уменьшении объема жидкости). Удержание Na<sup>+</sup> приводит к большому объему внеклеточного пространства и повышенному кровяному давлению с одновременными потерями К<sup>+</sup> и, как следствие, гипокалиемическому алкалозу. Когда более чем 90% коры надпочечников разрушено, например, по причине аутоиммунного воспаления надпочечников, метастазирующего рака или туберкулеза, развивается первичная хроническая недостаточность коры надпочечников (болезнь Аддисона). Дефицит альдостерона ведет к резкому увеличению экскреции Na<sup>+</sup>, что приводит к гиповолемии, гипотензии и удерживанию К<sup>+</sup> (гиперкалиемии). Когда одновременно развивается также дефицит глюкокортикоидов, осложнения могут быть опасны для жизни, особенно при серьезных инфекциях и травмах. Если разрушена только одна железа, АКТГ вызывает гипертрофию другой.
Тубулогломерулярная обратная связь, ренин-ангиотензиновая система Юкстагломерулярный аппарат (ЮГА) состоит из (а) юкстагломерулярных клеток приносящей артериолы (включая ренинсодержащие и симпатически иннервируемые гранулярные клетки) и выносящей артериолы, (б) клеток плотного пятна толстого сегмента восходящего колена петли Генле и (в) юкстагломерулярных мезангиальных клеток (полкиссен, А) нефрона (А).
'''Функции ЮГА''': (1) локальное проведение тубулогло-мерулярной обратной связи (механизм саморегуляции) в своем собственном нефроне при помощи ангиотензина II (ATII) и (2) системная продукция ангиотензина II как части ренин-ангиотензиновой системы (РАС).
Тубулогломерулярная обратная связь (механизм саморегуляции). Поскольку через почки ежедневно проходит в 10 раз больше жидкости, чем общий объем внеклеточной жидкости, выведение воды и соли должно точно соответствовать их поглощению. Резкие изменения в СКФ отдельного нефрона (СФН) и количества NaCI, фильтруемого в единицу времени, могут происходить по нескольким причинам. Повышение значения СФН ассоциируется с риском того, что дистальные механизмы реабсорбции NaCI перегружены, и слишком много NaCI и НгО будет потеряно с мочой. Заниженный показатель СФН означает, что слишком много NaCI и НдО удерживается. Степень реабсорбции NaCI и Н2О в проксимальных канальцах определяет, как быстро канальцевая моча проходит по петле Генле. Когда меньшее количество абсорбируется в верхней части, моча быстрее проходит по толстому сегменту восходящего колена петли, что приводит к уменьшению степени разбавления мочи и большей концентрации NaCI в плотном пятне, [NaCI]MD. Если величина [NaCI]MD становится слишком большой, гладкие мышцы стенки приносящей артериолы сокращаются, чтобы не изменилась СКФ через данный нефрон в течение 10 с, и наоборот (отрицательная обратная связь). Механизм регуляции неясен, но рецепторы ангиотензина II типа 1А (АТ1A) играют в этом ведущую роль.
Однако, если изменения [NaCI]MD обусловлены хроническими изменениями общего количества NaCI в организме и связанными с этим изменениями объема внеклеточной жидкости через механизм саморегуляции (обратной связи), нарушения зависимости СФН от [NaCI]MD могут иметь фатальные последствия. Поскольку увеличение в течение длительного времени объема внеклеточной жидкости уменьшает реабсорбцию NaCI в проксимальных канальцах, [NaCl]MD будет возрастать, приводя к снижению СКФ и дальнейшему увеличению объема внеклеточной жидкости. В обратной ситуации объем внеклеточной жидкости уменьшается. Для предотвращения таких эффектов зависимость [NaCl]MD/СФН может быть смещена в соответствующем направлении с помощью определенных веществ. Оксид азота (N0) смещает кривую при увеличении объема внеклеточной жидкости (увеличение СФН при прежнем значении [NaCI]MD), а (только локально эффективный) ангиотензин II сдвигает кривую в противоположном направлении при уменьшении объема.
[[Image:Naglydnay_fiziologiya181.jpg|250px|thumb|right|А. Юкстагломерулярный аппарат]]
'''Ренин-ангиотензиновая система (РАС)'''. Если среднее артериальное давление в почках внезапно падает ниже 90 мм рт. ст., почечные барорецепторы запускают высвобождение ренина, таким образом увеличивая общую концентрацию ренина в плазме. Ренин - это пептидаза, которая катализирует отщепление ангиотензина от субстрата ренина ангио-тензиногена (выделяемого печенью). Примерно через 30-60 мин после падения артериального давления ангиотензинпревращающий фермент (АПФ), который синтезируется в легких и других органах, отщепляет две аминокислоты от ангиотензина I с образованием ангиотензина II (Б).
[[Image:Naglydnay_fiziologiya182.jpg|250px|thumb|right|Б. Ренин-ангиотензиновая система (РАС)]]
'''Регуляция РАС (Б)'''. Порог артериального давления для высвобождения ренина увеличивается при помощи а1-адренорецепторов, а базальная секреция ренина увеличивается при помощи бета1-адренорецепторов. Ангиотензин II и альдостерон являются наиболее важными эффекторами РАС. Ангиотензин II стимулирует высвобождение альдостерона корой надпочечников (см. далее). Оба гормона прямо (срочное действие) или косвенно (отложенное действие) ведут к новому увеличению артериального давления (Б), и высвобождение ренина, таким образом, снижается до нормы. Кроме того, оба гормона ингибируют высвобождение ренина (отрицательная обратная связь).
Если средний кровоток снижается только в одной почке (например, в результате стеноза поврежденной почечной артерии), то поврежденная почка начинает высвобождать больше ренина, что, в свою очередь, приводит к почечной гипертензии в остальной системе кровообращения.
'''Эффекты ангиотензина II'''. Помимо действия на миокард и кровеносные сосуды (в основном посредством АТд-рецепторов), ангиотензин II имеет следующие срочные или отложенные эффекты, опосредованные рецепторами АТ1 (А).
*[[Физиология сердца и сердечно-сосудистой системы|Сосуды]]. Ангиотензин II имеет потенциальное вазоконст-рикторное и гипертензивное действие, что (посредством эндотелина) влияет на артериолы (срочное действие).
*[[Центральная нервная система|ЦНС]]. Ангиотензин II оказывает действие на гипоталамус, что приводит (через циркуляторный центр) к вазоконст-рикции (быстрое действие). Он также увеличивает секрецию АДГ в гипоталамусе, что стимулирует жажду и потребность в соли (отложенное действие).
*[[Почки]]. Ангиотензин II играет основную роль в регуляции почечного кровообращения и СКФ путем сужения приносящих и/или выносящих артериол (отложенное действие, ср. саморегуляция). Он прямо стимулирует реабсорбцию Na<sup>+</sup> в проксимальных канальцах (отложенное действие).
*[[Надпочечники]]. Ангиотензин II стимулирует синтез альдостерона в коре надпочечников (отложенное действие) и ведет к высвобождению адреналина в мозговом веществе надпочечников (срочное действие).
== Читайте также ==
*[[Почки]]
*[[Анатомия почки]]
*[[Почки как орган выделения]]
*[[Функции почек]]
*[[Кислотно-щелочной баланс ]]
*[[Клубочковая фильтрация и клиренс]]
*[[Транспорт в нефроне]]
*[[Гомеостаз жидкостей организма]]
*[[Почечная недостаточность и спорт (тренировки с одной почкой)]]