Открыть главное меню

SportWiki энциклопедия β

Изменения

Нейрон

25 565 байт убрано, 9 лет назад
Нет описания правки
Синапс (А3) — это участок, где аксон нейрона взаимодействует с эффекторами или другими нейронами. [[Синаптическая передача]] почти у всех млекопитающих осуществляется с помощью химических соединений, а не с помощью электрических сигналов. В ответ на электрический сигнал в аксоне из везикул на пресинаптической мембране происходит высвобождение нейромедиаторов путем экзоцитоза. Медиатор диффундирует через синаптическую щель (10-40 нм) к постсинаптической мембране, где он соединяется с рецепторами, создающими новые электрические сигналы (АЗ). В зависимости от типа участвующих в процессе нейромедиатора и рецептора нейромедиатор оказывает на постсинаптическую мембрану или возбуждающий (например, [[ацетилхолин]] в скелетной мышце), или тормозящий эффект (например, глицин в ЦНС). Поскольку постсинаптическая мембрана в норме не высвобождает нейромедиаторы (существует всего несколько исключений), нервные импульсы могут пройти через синапс только в одном направлении. Таким образом, синапс действует как клапан, который обеспечивает упорядоченную передачу сигнала. Синапсы являются также участками, в которых передача нервного импульса может быть преобразована другими (возбуждающими или тормозными) нейронами.
 
== Потенциал покоя ==
[[Image:Naglydnay_fiziologiya40.jpg|250px|thumb|right|А. Причины и следствия мембранного потенциала покоя ]]
Разность электрических потенциалов на клеточной мембране, т. е. мембранный потенциал (ЕД живой клетки можно измерить. Потенциал нервной или мышечной клетки в отсутствие стимуляции, т. е. потенциал покоя, составляет от -50 до -100 мВ [внутренняя поверхность клетки заряжена отрицательно). Потенциал покоя вызывается несбалансированным распределением ионов между внутриклеточной и внеклеточной средой (Б). При измерении мембранного потенциала надо учитывать несколько факторов.
 
*Клетка поддерживает неравномерное распределение ионов: Na<sup>+</sup>-К<sup>+</sup>-АТФаза постоянно «откачивает» Na<sup>+</sup> из клетки и «закачивает» в нее К<sup>+</sup> (Д2). В результате внутриклеточная концентрация К<sup>+</sup> примерно в 35 раз выше по сравнению с внеклеточной, а внутриклеточная концентрация Na<sup>+</sup> примерно в 20 раз ниже, чем внеклеточная (Б). Как и любой активный транспорт, этот процесс требует энергии, которую поставляет АТФ. Недостаток энергии или ингибирование Nа<sup>+</sup>-К<sup>+</sup>-АТФазы приводят к выравниванию ионного градиента и нарушению мембранного потенциала.
 
Поскольку анионные белки и фосфаты, присутствующие в цитоплазме в высокой концентрации, покинуть клетку не могут, вклад чисто пассивных механизмов (распределение Гиббса-Доннана) в неравномерное распределение диффундирующих ионов может быть лишь незначительным (А1). По причине электронейтральности любой биосистемы [Na<sup>+</sup> + К<sup>+</sup>]внутр > [Na<sup>+</sup> + К<sup>+</sup>]внешн и [Сl]внутр. <[Cl]внешн. Однако это практически не влияет на формирование потенциала покоя.
 
*Низкая проводимость мембраны клетки в покое для Na<sup>+</sup> (gNa<sup>+</sup>) и Са<sup>2+</sup> (gСа<sup>2+</sup>). Мембрана клетки в покое слабо проницаема для Na<sup>+</sup> и Са<sup>2+</sup> и <gNа+ составляет только малый процент от общей проводимости. Следовательно, разница в концентрации Na<sup>+</sup> (АЗ-А5) не может быть устранена путем пассивной диффузии Na<sup>+</sup> обратно в клетку.
 
*Высокая проводимость К<sup>+</sup> (gK+). Ионам К<sup>+</sup> сравнительно легко диффундировать через клеточную мембрану (gK « 90% от общей проводимости). По причине высокого градиента концентрации ионы К<sup>+</sup> диффундируют из внутриклеточной среды во внеклеточную (АЗ). Из-за их положительного заряда диффузия даже малого количества ионов К<sup>+</sup> ведет к возникновению электрического потенциала (диффузионного потенциала) на мембране. Диффузионный потенциал (отрицательный заряд на внутренней стороне мембраны) обусловливает ионный транспорт К<sup>+</sup> назад в клетку; диффузионный потенциал возрастает до тех пор, пока почти полностью не компенсирует градиент концентрации К<sup>+</sup>, обусловливающий выход ионов К<sup>+</sup> из клетки (А4). В результате мембранный потенциал (Em) оказывается почти равным равновесному электрохимическому потенциалу К<sup>+</sup>, Ek.
[[Image:Naglydnay_fiziologiya39.jpg|250px|thumb|right|Б. Типичные «эффективные» концентрации и равновесные потенциалы важнейших ионов в скелетной мышце (при 37 °С)]]
*Распределение ионов Сl<sup>-</sup>. Поскольку клеточная мембрана также проницаема для ионов Сl<sup>-</sup> (E- в мышечных клетках больше, чем в нервных), мембранный потенциал (электрическая «движущая сила») выводит ионы Сl<sup>-</sup> из клетки (А4), в то время как градиент концентрации ионов Сl<sup>-</sup> (химическая «движущая сила») возвращает их назад в клетку с той же скоростью. Внутриклеточная концентрация [Сl]внутр продолжает расти до тех пор, пока равновесный потенциал Сl<sup>-</sup> не окажется равным Em (А5). [Сl<sup>-</sup>]внутр. можно рассчитать, используя уравнение Нернста. Такое «пассивное» распределение CI-между внутриклеточной и внеклеточной средой существует только в отсутствие активного поглощения Cl клеткой.
 
* Почему величина Еm менее отрицательна, чем Ek? Хотя проводимость для Na<sup>+</sup> и Са<sup>2+</sup> в покоящейся клетке довольно низкая, некоторое количество ионов Na<sup>+</sup> и Са<sup>2+</sup> все время входит в клетку (А4, 5). Это происходит потому, что равновесные потенциалы обоих ионов имеют высокие положительные значения, благодаря чему процессом управляют высокие значения электрической и химической «движущей силы», направленной для этих ионов извне вовнутрь (Б). Этот катионный ток внутрь клетки деполяризует мембрану, выводя ионы К<sup>+</sup> из клетки (1К<sup>+</sup> на каждый входящий в клетку положительный заряд). Если бы Na<sup>+</sup>-К<sup>+</sup>-АТФаза не восстанавливала постоянно эти градиенты (градиент Са<sup>2+</sup> косвенно: 3Na<sup>+</sup>/Ca2+;), внутриклеточная концентрация Na<sup>+</sup> и Са<sup>2+</sup> непрерывно возрастала бы, а [К<sup>+</sup>]внутр уменьшалась, при этом величины Еm и Ek< становились бы менее отрицательными.
 
Все живые клетки имеют на мембране потенциал покоя, но только возбудимые (нервные и мышечные) способны значительно изменять проводимость ионов через мембрану в ответ на стимулы, такие как потенциал действия.
 
== Потенциал действия ==
[[Image:Naglydnay_fiziologiya41.jpg|250px|thumb|right|А. Потенциал действия (1) и ионная проводимость (2) (нервная и скелетная мышцы)]]
'''Потенциал действия''' - это сигнал, проходящий через аксон или через мышечное волокно и влияющий на другие нейроны или приводящий к мышечному сокращению. Возбуждение нейрона происходит, если мембранный потенциал Еm на аксонном холмике мотонейрона или на двигательной концевой пластинке мышечного волокна возрастает от потенциала покоя к менее отрицательным значениям (медленная деполяризация, А1). Эту деполяризацию может вызывать открывание постсинаптических катионных каналов, индуцированное медиаторами или электрический стимул из окружающей среды. Если Еm стимулируемой клетки приближается к критическому, или пороговому, потенциалу (А1), активируются «быстрые» потенциалзависимые Na<sup>+</sup>-каналы (Б4 и Б1). Это приводит к увеличению проводимости Na<sup>+</sup>, gNа+, и входу Na<sup>+</sup> в клетку (А2). Если пороговый потенциал не достигается, ответ остается локальным (подпороговым).
[[Image:Naglydnay_fiziologiya42.jpg|250px|thumb|right|Б. Потенциалзависимые Na<sup>+</sup>-каналы]]
Как только достигается пороговый потенциал, клетка отвечает быстрой деполяризацией по принципу «все или ничего»; это явление и носит название потенциала действия, ПД (А1). Потенциал действия формируется специфическим для данного типа клеток образом, независимо от величины стимула, который его индуцировал. Активируется большое количество Na<sup>+</sup>-каналов, и входящие токи Na<sup>+</sup> ускоряют деполяризацию, которая, в свою очередь, увеличивает gNа+ и т. д. (положительная обратная связь). В результате Ет быстро ослабевает (в течение 0,1 мс в нервной клетке; быстрая фаза деполяризации) и временно достигает положительных значений (овершут, от +20 до +30 мВ). До наступления овершута gNа+ снижается (А2), так как за 0,1 мс инактивируются Na<sup>+</sup>-каналы (Б1 => БЗ). Потенциал обращается, и начинается восстановление потенциала покоя; это фаза реполяризации потенциала действия. Деполяризация увеличивает, хотя и сравнительно медленно, вероятность открывания потенциалзависимых К<sup>+</sup>-каналов. Это увеличивает проводимость для калия (gK+), что ускоряет наступление реполяризации.
 
Во многих случаях gK+ остается повышенной даже после восстановления исходного потенциала покоя (А2) и Ет временно приближается по значению к Eк, приводя к гиперполяризующему потенциалу последействия (следовому потенциалу) (А1). Электрически индуцированное увеличение активности Na<sup>+</sup>-К<sup>+</sup>-АТФазы может вносить вклад в развитие следового потенциала.
 
Возможна генерация очень длительной последовательности потенциалов действия (в некоторых
 
нервных клетках с частотой до 1000 с<sup>-1</sup>), поскольку количество ионов, проникающих сквозь мембрану, очень мало (примерно 1/100 000 всех внутриклеточных ионов). Более того, Na<sup>+</sup>-К<sup>+</sup>-АТФаза обеспечивает непрерывное восстановление начальной ионной концентрации.
 
Во время потенциала действия клетка остается нечувствительной к дальнейшей стимуляции; наступает период рефрактерности. Во время периода абсолютной рефрактерности не может быть индуцирован новый потенциал действия даже при наличии очень сильного стимула, поскольку Na<sup>+</sup>-каналы не могут быть активированы в деполяризованной мембране (БЗ). За периодом абсолютной рефрактерности следует период относительной рефрактерности, в течение которого даже при наличии сильного стимула может быть генерирован лишь потенциал действия малой амплитуды и скорости. Рефрактерный период заканчивается, когда значение мембранного потенциала возвращается к потенциалу покоя.
 
Степень активации Na<sup>+</sup>-каналов и, таким образом, сила Na<sup>+</sup>-TOKOB, INа+, зависит от потенциала покоя, предшествующего возбуждению, а не от продолжительности деполяризации. Активация Na-каналов достигает максимума при потенциале покоя —100 мВ, а при 60 мВ активность Na<sup>+</sup>-каналов составляет лишь 40% от максимальной. У млекопитающих Na<sup>+</sup>-каналы не могут быть активированы при потенциале покоя <50 мВ (БЗ). Период рефрактерности (абсолютной и относительной) (см. выше), т. е. отсутствие возбудимости клеток, наблюдается после введения деполяризующих веществ, таких как суксаметоний.
 
Повышенная внеклеточная концентрация Са<sup>2+</sup> усложняет стимуляцию клетки, так как пороговый потенциал становится менее отрицательным. С другой стороны, возбудимость увеличивается (с понижением порогового потенциала) при гипокальциемических состояниях, например во время мышечного спазма при тетании
 
== Распространение потенциала действия по нервному волокну ==
При приложении напряжения по электрическому проводу течет электрический ток. Внутри провода находится металлическая проволока, она хорошо изолирована и имеет низкое сопротивление, сводя потерю тока к минимуму. В результате передача тока может осуществляться на большие расстояния. Нервные волокна, особенно немиелинизированные, имеют значительное внутреннее сопротивление (Bвнутр.) и не очень хорошо изолированы от окружения. Таким образом, передача нервных импульсов напоминает электрический ток, текущий по проводу, но процесс очень быстро истощается. Передаваемые импульсы требуют постоянного «обновления» с помощью генерации новых потенциалов действия.
[[Image:Naglydnay_fiziologiya43.jpg|250px|thumb|right|А. Непрерывное (1а, 16) и сальтаторное распространение потенциала действия]]
'''Распространение потенциала действия (ПД)'''. Начало потенциала действия сопровождается кратким притоком Na<sup>+</sup> в нервное волокно (А1а). Клеточная мембрана, которая ранее была изнутри заряжена отрицательно, теперь становится положительно заряженной (от +20 до +30 мВ), таким образом создавая продольную разность потенциалов на близлежащих, еще не испытавших стимула отрезков нерва (отрицательных изнутри, от -70 до -90 мВ). За этим следует пассивное перемещение заряда из близлежащего отрезка нервного волокна, вызывающее его деполяризацию. Если деполяризация превышает пороговый уровень, создается потенциал действия в близлежащем отрезке нерва, а потенциал действия на предыдущем участке исчезает (А1б).
[[Image:Naglydnay_fiziologiya44.jpg|250px|thumb|right|Б. Распространение импульса (биоток) в миелинизированных и немиелинизированных нервных волокнах]]
Поскольку мембрана действует как конденсатор, перемещение заряда представляет собой деполяризующий ток, который становится меньше и растет менее круто с увеличением расстояния. По причине сравнительно высокого сопротивления Rвнутр нервного волокна обратные токи пересекают мембрану сравнительно близко к участку возбуждения, и ток вдоль волокна с расстоянием уменьшается. В то же время деполяризация увеличивает движущую силу (Em- Ek) для выхода К<sup>+</sup>. Покидающий клетку К<sup>+</sup>, таким образом, ускоряет реполяризацию. Отсюда следует, что распространение потенциала действия ограничено расстоянием, где аккумулированных токов хватает для достаточно сильной и быстрой деполяризации мембраны. Иначе Na<sup>+</sup>-каналы будут дезактивированы до достижения порогового потенциала.
[[Image:Naglydnay_fiziologiya45.jpg|250px|thumb|right|В. Классификация нервных волокон у человека]]
Потенциалы действия обычно направлены вперед (ортодромны), поскольку каждый отрезок нервного волокна становится рефрактерным после прохождения потенциала действия (А1б). Однако если импульсы проводятся в противоположном направлении (антидромны), например, стимуляции нервного волокна из внешнего источника, они закончатся у следующего синапса (волнообразный импульс).
 
Несмотря на то что постоянная генерация потенциала действия в прилегающем отрезке нервного волокна гарантирует обновление сигнала, этот процесс требует времени (Б1). Скорость проведения сигнала в немиелинизированных нервных волокнах (тип С) (В) составляет только 1 м/с. Миелинизированные нервные волокна (типы А и В; В) проводят сигнал гораздо быстрее (до 80 м/с у человека). В участках между перехватами миелиновая оболочка изолирует нервное волокно от окружающей среды и, таким образом, продольные токи здесь достаточно сильные, чтобы генерировать потенциалы действия, способные распространяться далее вниз по аксону (примерно на 1,5 мм) (А2). Это приводит к более эффективной проводимости, так как потенциалы действия генерируются только у немиелинизированных перехватов Ранвье, где имеется высокая плотность Nа<sup>+</sup>-каналов. В результате потенциал действия быстро и скачкообразно распространяется от перехвата к перехвату (сальтаторное распространение). Сальтаторное расстояние ограничено, так как продольные токи (от 1 до 2 нА) становятся слабее с увеличением дистанции (Б2). Перед тем как они падают ниже порогового уровня, сигнал должен быть обновлен новым потенциалом действия с потерей во времени в 0,1 мс.
 
Поскольку внутреннее сопротивление нервного волокна Rвнутр ограничивает распространение деполяризации; как описано выше, диаметр аксона (2г) также влияет на скорость проведения сигнала, 0 (В). Сопротивление нервного волокна Rвнутр пропорционально площади его поперечного сечения (лr), т. е. Rвнутр. ~ 1 /r2. Тонкие волокна, таким образом, требуют на единицу длины меньше новых потенциалов действия, что увеличивает скорость проведения сигнала 0. Возрастание диаметра волокна сопровождается увеличением обхвата волокна (2лr) и мембранной емкости К (мембранная емкость К пропорциональна r). Несмотря на то что скорость проведения сигнала 0 уменьшается, влияние меньшего Rвнутр преобладает по причине квадратичной зависимости от r.
== Искусственная стимуляция нервной клетки ==
700
правок

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция