4702
правки
Изменения
Новая страница: «{{Клинфарм1}} == ГЕНОТЕРАПИЯ == Благодаря достижениям молекулярной и клеточной биологии мы…»
{{Клинфарм1}}
== ГЕНОТЕРАПИЯ ==
Благодаря достижениям молекулярной и клеточной биологии мы уже многое знаем о белковых нарушениях, лежащих в основе целого ряда заболеваний, а методы генной инженерии дают возможность воздействовать на гены, управляющие синтезом белка. Размер, сложность структуры белковых молекул, а также отграниченность внутриклеточной среды препятствуют восполнению дефицита белков или их модификации с помощью обычных фармакологических методов. Генотерапия, в принципе, способна преодолеть указанные препятствия, поскольку ее методы позволяют ввести рекомбинантную ДНК в клетки, что обеспечивает синтез функционально активных белков взамен дефектных. Поэтому доставка рекомбинантной ДНК — важнейшая проблема генотерапии. Существуют и другие подходы, использующие ДНК и РНК в качестве лекарственных средств. Первоначально целью генотерапии было лечение наследственных заболеваний, однако сейчас разработаны подходы к лечению и приобретенных заболеваний, таких, как злокачественные новообразования и инфекционные болезни. В этой главе кратко рассмотрены клинические аспекты и методы генотерапии.
Современная эра молекулярной медицины подготовлена революционными достижениями генетики и молекулярной биологии человека. Многие ожидают, что медицина вскоре преобразится благодаря новым методам воздействия непосредственно на геном человека — иными словами, благодаря генотерапии. О развитии этой относительно новой дисциплины свидетельствует экспоненциальный рост числа соответствующих научных и клинических публикаций. Недавно появились пять новых биомедицинских журналов, посвященных исключительно генотерапии или использованию нуклеиновых кислот в качестве лекарственных средств, а также многочисленные книги и монографии. Сейчас проводится более 300 клинических испытаний методов, включающих трансфекцию клеток (Rosenberg et al., 2000), а первое лекарственное средство на основе нуклеиновой кислоты (фомивирсен) уже одобрено ФДА.
Несмотря на грандиозные достижения последнего десятилетия, генотерапия остается в основном экспериментальным подходом. Еще предстоит преодолеть многочисленные препятствия на пути безопасной и эффективной доставки нуклеиновой кислоты в клетки, а также обеспечения длительной и тканеспецифичной экспрессии введенного генетического материала — так называемых трансгенов. В этой главе рассмотрены три основные раздела генотерапии: методы доставки, принципы лечения и патогенетические мишени.
== Методы трансфекции клеток ==
Идеальная система доставки ДНК должна обеспечивать:
1) перенос молекул разной длины, 2) легкость получения в концентрированном виде и 3) избирательность по отношению к клеткам-мишеням. Кроме того, она должна гарантировать длительную экспрессию трансгенов, быть нетоксичной и неиммуногенной. Такая система пока не создана, а все существующие методы трансфекции in vivo имеют существенные недостатки. Сейчас разрабатываются несколько новых методов, основанных как на вирусных векторах, так и на невирусных способах доставки трансгенов. В табл. 5.1 сопоставлены особенности, преимущества и недостатки наиболее широко используемых методов.
== Проблемы генотерапии ==
Каждое открытие в области клеточной биологии ведет к созданию новых методов генотерапии. К сожалению, на пути от научных достижений к клинической практике есть несколько принципиальных препятствий. В обозримом будущем влияние генотерапии ограничено лишь соматическими клетками (не зародышевыми). Трансген должен избирательно попасть в клетки определенной ткани, чему сейчас уделяется существенное внимание. Как только произошла трансфекция, на первый план выходит проблема поддержания экспрессии трансгена. Наконец, сам вектор может обладать опасным побочным действием (Jolly, 1994).
=== Фармакокинетика ===
Доставка чужеродной ДНК и ее последующие преобразования в клетке-мишени не могут быть описаны обычными уравнениями фармакокинетики (гл. 1). Важны не только судьба собственно вводимой ДН К (например, объем распределения, скорость поступления в ткани), но и последствия изменения экспрессии генов и функции белков. Обязательно нужно учитывать следующее: 1) распределение введенной ДНК в тканях, 2) эффективность поглощения ДНК клетками-мишенями, 3) распределение ДНК между внутриклеточными органеллами, 4) скорость разрушения введенной ДНК,5) скорость транскрипции, 6) время жизни образующейся мРНК, 7) количество и стабильность синтезируемого белка, 8) распределение белка внутри клетки или уровень его секреции. Если учитывать все эти параметры, то можно (хотя пока еще — чисто теоретически) подбирать уровень трансфекции и экспрессии гена в соответствии с конкретными клиническими задачами. Во всяком случае, многокамерные фармакокинетические модели для генотерапии уже появились (Ledley and Ledley, 1994).
=== Продолжительность экспрессии трансгенов ===
Этот вопрос очень важен. При лечении наследственных заболеваний желательно иметь стабильную экспрессию на протяжении многих лет. Напротив, при лечении злокачественного новообразования продолжительный синтез нового белка может быть излишним и даже вредным.
Векторы, которые обеспечивают встраивание ДНК в хромосомы клетки-мишени (например, ретровирусные и аденоассоциированные векторы), способствуют наиболее длительной экспрессии. Однако само по себе присутствие чужеродной ДНК в геноме еще не гарантирует ее стабильной экспрессии. Транскрипция трансгена и синтез соответствующего белка могут снижаться, например из-за инактивации трансгенного промотора (Bestor,2000). В некоторых случаях иммунная система организма уничтожает трансфицированные клетки (Jolly, 1994).
=== Неблагоприятные последствия экспрессии трансгенов ===
В случае успешной трансфекции и экспрессии трансгенов возникают новые проблемы. Как и с любым новым лекарственным средством, невозможно заранее предвидеть все возможные последствия генотерапии. Однако некоторые процессы вполне предсказуемы. Поскольку обычно трансфекция приводит к синтезу нового белка, возможна активация иммунной системы организма. Выраженный иммунный ответ может привести к инактивации секретируемого белка (как это происходит у больных гемофилией, получающих фактор VIII) или повреждению трансфицированных клеток. В некоторых случаях сама система доставки ДН К является иммуногенной, что было показано для аденовирусных векторов. Иммунный ответ на вектор снижает эффективность трансфекции, а при повторном введении вектора препятствует ей.
'''Таблица 5.1. Сравнение способов доставки трансгенов'''
<table border="1">
<tr><td>
<p>Способ</p></td><td>
<p>Емкость, тысячи нуклеотидов</p></td><td>
<p>Спектр клеток-К- мишеней</p></td><td>
<p>Длительность</p>
<p>экспрессии</p></td><td>
<p>Основные</p>
<p>преимущества</p></td><td>
<p>Основные недостатки</p></td></tr>
<tr><td>
<p>Ретровирусы</p></td><td>
<p><8</p></td><td>
<p>Только делящиеся клетки</p></td><td>
<p>Длительная</p></td><td>
<p>Длительная экспрессия; низкая иммуно-генность</p></td><td>
<p>Применим только для делящихся клеток; низкая эффективность трансфекции; сомнения в безопасности случайного встраивания в геном</p></td></tr>
<tr><td>
<p>Аденовирусы</p></td><td>
<p><7,5</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Кратковременная</p></td><td>
<p>Широкий спектр клеток-мишеней; заражает неделящиеся клетки; возможность получения высокой концентрации вектора; высокая эффективность трансфекции</p></td><td>
<p>Кратковременная экспрессия; иммунный ответ организма</p></td></tr>
<tr><td>
<p>Аденоассоцииро-ванные вирусы</p></td><td>
<p><5,2</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Длительная</p></td><td>
<p>Широкий спектр клеток-мишеней; непатогенны и неиммуно-генны; длительная экспрессия</p></td><td>
<p>Малая емкость; трудность получения высокой концентрации вектора и определения его титра</p></td></tr>
<tr><td>
<p>Лентивирусы</p></td><td>
<p><8</p></td><td>
<p>Делящиеся и некоторые неделящиеся клетки</p></td><td>
<p>Длительная</p></td><td>
<p>Длительная экспрессия; заражает неделящиеся клетки</p></td><td>
<p>Сомнения в безопасности вектора на основе ВИЧ; трудность получения</p></td></tr>
<tr><td>
<p>Вирус простого герпеса</p></td><td>
<p>20-30</p></td><td>
<p>Многие неделящиеся клетки, особенно нейроны</p></td><td>
<p></p></td><td>
<p>Большая емкость</p></td><td>
<p>Цитотоксичность; инактивация промотора</p></td></tr>
<tr><td>
<p>Липосомы</p></td><td>
<p>> 10</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Кратковременная</p></td><td>
<p>Непатогенны; дешевы и просты в получении; безопасны</p></td><td>
<p>Низкая эффективность; кратковременная экспрессия</p></td></tr>
<tr><td>
<p>ДНК-белковые</p>
<p>комплексы</p></td><td>
<p>> 10</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Кратковременная</p></td><td>
<p>Непатогенны; дешевы и просты в получении; безопасны</p></td><td>
<p>Низкая эффективность; кратковременная экспрессия</p></td></tr>
</table>
Причиной побочного действия может быть репродукция вирусного вектора. Значительные усилия направлены на разработку вирусных векторов, не способных к репродукции в клетках-мишенях. Для этого из вирусного генома удаляют некоторые гены, необходимые для репродукции (рис. 5.1). Чтобы получить такие вирусы в большом количестве, их приходится выращивать в культуре специальных линий клеток, восполняющих утраченные функции. Так получают ретровирусы, аденовирусы, аденоассоциированные вирусы и герпесвирусы, не способные к репродукции в обычных клетках. Однако этот подход не гарантирует полной потери способности вирусов к репродукции. Вирус может компенсировать потерю удаленных участков генома за счет неизвестных клеточных факторов или за счет рекомбинации с аналогичными дикими вирусами в организме больного. К счастью, последний феномен пока на практике не наблюдался.
=== Этические и юридические проблемы ===
Большое внимание привлечено к этическим аспектам генотерапии (Juengst and Walters, 1999). В основном обсуждается следующее: 1) соотношение риска и пользы для больных, участвующих в отработке экспериментальных методов генотерапии, 2) отбор и защита таких больных и 3) этические аспекты трансфекции зародышевых клеток. Обеспечение безопасности больных — основная цель официальных инструкций, регулирующих исследования в области генотерапии (см. ниже). Теоретически возможная трансфекция зародышевых клеток человека вызывает множество этических вопросов. Общество обеспокоено тем, что изменение генетического материала будущих поколений может привести к дискриминации лиц с определенным генотипом. Кроме того, существует опасность, что методы генотерапии будут использованы для немедицинских целей, например для косметических и других изменений организма. Продолжающееся обсуждение среди специалистов, а также в обществе исключительно важно для успеха и распространения генотерапии как стандартной практики.
Обеспокоенность общества и правительства этическими вопросами и безопасностью генотерапии привело к жесткому контролю за такими исследованиями (Wivel and Anderson, 1999). Вначале 1980-х гг. правительственный надзор за исследованиями в этой области в США был поручен Консультативному совету по генной инженерии Национального института здоровья. Этот совет рассматривает все клинические испытания, использующие методы генотерапии, а также обеспечивает обсуждение важнейших научных и этических аспектов генотерапии. Как и в случае других новых методов лечения, для проведения клинических испытаний необходимо получить разрешение ФДА. На местном уровне разрешение на проведение клинических исследований по генотерапии дают две независимые комиссии (наблюдательный совет и совет по биологической безопасности), имеющиеся в медицинских центрах и исследовательских институтах. Задача наблюдательного совета — защитить людей от излишнего риска при применении нового метода лечения, тогда как совет по биологической безопасности следит за соблюдением «Правил проведения исследований в области генной инженерии», принятых Национальным институтом здоровья. Этот механизм обеспечивает строгое соблюдение как правил техники безопасности, так и этических и профессиональных норм при проведении подобных клинических исследований.
Рисунок 5.1. Использование ретровирусного вектора. А. Схема получения ретровирусного вектора. Для получения не способных к репродукции ретровирусных векторов используют специальные линии клеток, способные синтезировать те вирусные белки, гены которых удалены при конструировании вектора. В клетки подходящей линии (например, эмбриональные клетки почки человека) с помощью бактериальных плазмид вводят гены gag (G), pol (Р) и env (Е). Клетки, синтезирующие соответствующие вирусные белки, называют упаковывающими. Затем плазмиду, содержащую рекомбинантную ДНК провируса, в которой вместо генов gag, pol и env находится нужный трансген, используют для трансфекции упаковывающих клеток. Теперь клетки содержат все, что нужно для сборки вирусов, и ретровирусные векторы начинают накапливаться в культуральной среде. Эти векторы содержат трансген, но лишены вирусных генов gag, pol и env, а потому при заражении следующей клетки они не могут репродуцироваться. Б. Экспрессия трансгена в клетке-мишени после внедрения РНК-содержащего ретровирусного вектора (см. «Жизненный цикл»).
== Читайте также ==
*[[Вирусные векторы (генотерапия)]]
*[[Невирусная доставка генов (генотерапия)]]
*[[Эктопический синтез белков (генотерапия)]]
*[[Генотерапия рака (злокачественных опухолей)]]
== ГЕНОТЕРАПИЯ ==
Благодаря достижениям молекулярной и клеточной биологии мы уже многое знаем о белковых нарушениях, лежащих в основе целого ряда заболеваний, а методы генной инженерии дают возможность воздействовать на гены, управляющие синтезом белка. Размер, сложность структуры белковых молекул, а также отграниченность внутриклеточной среды препятствуют восполнению дефицита белков или их модификации с помощью обычных фармакологических методов. Генотерапия, в принципе, способна преодолеть указанные препятствия, поскольку ее методы позволяют ввести рекомбинантную ДНК в клетки, что обеспечивает синтез функционально активных белков взамен дефектных. Поэтому доставка рекомбинантной ДНК — важнейшая проблема генотерапии. Существуют и другие подходы, использующие ДНК и РНК в качестве лекарственных средств. Первоначально целью генотерапии было лечение наследственных заболеваний, однако сейчас разработаны подходы к лечению и приобретенных заболеваний, таких, как злокачественные новообразования и инфекционные болезни. В этой главе кратко рассмотрены клинические аспекты и методы генотерапии.
Современная эра молекулярной медицины подготовлена революционными достижениями генетики и молекулярной биологии человека. Многие ожидают, что медицина вскоре преобразится благодаря новым методам воздействия непосредственно на геном человека — иными словами, благодаря генотерапии. О развитии этой относительно новой дисциплины свидетельствует экспоненциальный рост числа соответствующих научных и клинических публикаций. Недавно появились пять новых биомедицинских журналов, посвященных исключительно генотерапии или использованию нуклеиновых кислот в качестве лекарственных средств, а также многочисленные книги и монографии. Сейчас проводится более 300 клинических испытаний методов, включающих трансфекцию клеток (Rosenberg et al., 2000), а первое лекарственное средство на основе нуклеиновой кислоты (фомивирсен) уже одобрено ФДА.
Несмотря на грандиозные достижения последнего десятилетия, генотерапия остается в основном экспериментальным подходом. Еще предстоит преодолеть многочисленные препятствия на пути безопасной и эффективной доставки нуклеиновой кислоты в клетки, а также обеспечения длительной и тканеспецифичной экспрессии введенного генетического материала — так называемых трансгенов. В этой главе рассмотрены три основные раздела генотерапии: методы доставки, принципы лечения и патогенетические мишени.
== Методы трансфекции клеток ==
Идеальная система доставки ДНК должна обеспечивать:
1) перенос молекул разной длины, 2) легкость получения в концентрированном виде и 3) избирательность по отношению к клеткам-мишеням. Кроме того, она должна гарантировать длительную экспрессию трансгенов, быть нетоксичной и неиммуногенной. Такая система пока не создана, а все существующие методы трансфекции in vivo имеют существенные недостатки. Сейчас разрабатываются несколько новых методов, основанных как на вирусных векторах, так и на невирусных способах доставки трансгенов. В табл. 5.1 сопоставлены особенности, преимущества и недостатки наиболее широко используемых методов.
== Проблемы генотерапии ==
Каждое открытие в области клеточной биологии ведет к созданию новых методов генотерапии. К сожалению, на пути от научных достижений к клинической практике есть несколько принципиальных препятствий. В обозримом будущем влияние генотерапии ограничено лишь соматическими клетками (не зародышевыми). Трансген должен избирательно попасть в клетки определенной ткани, чему сейчас уделяется существенное внимание. Как только произошла трансфекция, на первый план выходит проблема поддержания экспрессии трансгена. Наконец, сам вектор может обладать опасным побочным действием (Jolly, 1994).
=== Фармакокинетика ===
Доставка чужеродной ДНК и ее последующие преобразования в клетке-мишени не могут быть описаны обычными уравнениями фармакокинетики (гл. 1). Важны не только судьба собственно вводимой ДН К (например, объем распределения, скорость поступления в ткани), но и последствия изменения экспрессии генов и функции белков. Обязательно нужно учитывать следующее: 1) распределение введенной ДНК в тканях, 2) эффективность поглощения ДНК клетками-мишенями, 3) распределение ДНК между внутриклеточными органеллами, 4) скорость разрушения введенной ДНК,5) скорость транскрипции, 6) время жизни образующейся мРНК, 7) количество и стабильность синтезируемого белка, 8) распределение белка внутри клетки или уровень его секреции. Если учитывать все эти параметры, то можно (хотя пока еще — чисто теоретически) подбирать уровень трансфекции и экспрессии гена в соответствии с конкретными клиническими задачами. Во всяком случае, многокамерные фармакокинетические модели для генотерапии уже появились (Ledley and Ledley, 1994).
=== Продолжительность экспрессии трансгенов ===
Этот вопрос очень важен. При лечении наследственных заболеваний желательно иметь стабильную экспрессию на протяжении многих лет. Напротив, при лечении злокачественного новообразования продолжительный синтез нового белка может быть излишним и даже вредным.
Векторы, которые обеспечивают встраивание ДНК в хромосомы клетки-мишени (например, ретровирусные и аденоассоциированные векторы), способствуют наиболее длительной экспрессии. Однако само по себе присутствие чужеродной ДНК в геноме еще не гарантирует ее стабильной экспрессии. Транскрипция трансгена и синтез соответствующего белка могут снижаться, например из-за инактивации трансгенного промотора (Bestor,2000). В некоторых случаях иммунная система организма уничтожает трансфицированные клетки (Jolly, 1994).
=== Неблагоприятные последствия экспрессии трансгенов ===
В случае успешной трансфекции и экспрессии трансгенов возникают новые проблемы. Как и с любым новым лекарственным средством, невозможно заранее предвидеть все возможные последствия генотерапии. Однако некоторые процессы вполне предсказуемы. Поскольку обычно трансфекция приводит к синтезу нового белка, возможна активация иммунной системы организма. Выраженный иммунный ответ может привести к инактивации секретируемого белка (как это происходит у больных гемофилией, получающих фактор VIII) или повреждению трансфицированных клеток. В некоторых случаях сама система доставки ДН К является иммуногенной, что было показано для аденовирусных векторов. Иммунный ответ на вектор снижает эффективность трансфекции, а при повторном введении вектора препятствует ей.
'''Таблица 5.1. Сравнение способов доставки трансгенов'''
<table border="1">
<tr><td>
<p>Способ</p></td><td>
<p>Емкость, тысячи нуклеотидов</p></td><td>
<p>Спектр клеток-К- мишеней</p></td><td>
<p>Длительность</p>
<p>экспрессии</p></td><td>
<p>Основные</p>
<p>преимущества</p></td><td>
<p>Основные недостатки</p></td></tr>
<tr><td>
<p>Ретровирусы</p></td><td>
<p><8</p></td><td>
<p>Только делящиеся клетки</p></td><td>
<p>Длительная</p></td><td>
<p>Длительная экспрессия; низкая иммуно-генность</p></td><td>
<p>Применим только для делящихся клеток; низкая эффективность трансфекции; сомнения в безопасности случайного встраивания в геном</p></td></tr>
<tr><td>
<p>Аденовирусы</p></td><td>
<p><7,5</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Кратковременная</p></td><td>
<p>Широкий спектр клеток-мишеней; заражает неделящиеся клетки; возможность получения высокой концентрации вектора; высокая эффективность трансфекции</p></td><td>
<p>Кратковременная экспрессия; иммунный ответ организма</p></td></tr>
<tr><td>
<p>Аденоассоцииро-ванные вирусы</p></td><td>
<p><5,2</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Длительная</p></td><td>
<p>Широкий спектр клеток-мишеней; непатогенны и неиммуно-генны; длительная экспрессия</p></td><td>
<p>Малая емкость; трудность получения высокой концентрации вектора и определения его титра</p></td></tr>
<tr><td>
<p>Лентивирусы</p></td><td>
<p><8</p></td><td>
<p>Делящиеся и некоторые неделящиеся клетки</p></td><td>
<p>Длительная</p></td><td>
<p>Длительная экспрессия; заражает неделящиеся клетки</p></td><td>
<p>Сомнения в безопасности вектора на основе ВИЧ; трудность получения</p></td></tr>
<tr><td>
<p>Вирус простого герпеса</p></td><td>
<p>20-30</p></td><td>
<p>Многие неделящиеся клетки, особенно нейроны</p></td><td>
<p></p></td><td>
<p>Большая емкость</p></td><td>
<p>Цитотоксичность; инактивация промотора</p></td></tr>
<tr><td>
<p>Липосомы</p></td><td>
<p>> 10</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Кратковременная</p></td><td>
<p>Непатогенны; дешевы и просты в получении; безопасны</p></td><td>
<p>Низкая эффективность; кратковременная экспрессия</p></td></tr>
<tr><td>
<p>ДНК-белковые</p>
<p>комплексы</p></td><td>
<p>> 10</p></td><td>
<p>Большинство клеток</p></td><td>
<p>Кратковременная</p></td><td>
<p>Непатогенны; дешевы и просты в получении; безопасны</p></td><td>
<p>Низкая эффективность; кратковременная экспрессия</p></td></tr>
</table>
Причиной побочного действия может быть репродукция вирусного вектора. Значительные усилия направлены на разработку вирусных векторов, не способных к репродукции в клетках-мишенях. Для этого из вирусного генома удаляют некоторые гены, необходимые для репродукции (рис. 5.1). Чтобы получить такие вирусы в большом количестве, их приходится выращивать в культуре специальных линий клеток, восполняющих утраченные функции. Так получают ретровирусы, аденовирусы, аденоассоциированные вирусы и герпесвирусы, не способные к репродукции в обычных клетках. Однако этот подход не гарантирует полной потери способности вирусов к репродукции. Вирус может компенсировать потерю удаленных участков генома за счет неизвестных клеточных факторов или за счет рекомбинации с аналогичными дикими вирусами в организме больного. К счастью, последний феномен пока на практике не наблюдался.
=== Этические и юридические проблемы ===
Большое внимание привлечено к этическим аспектам генотерапии (Juengst and Walters, 1999). В основном обсуждается следующее: 1) соотношение риска и пользы для больных, участвующих в отработке экспериментальных методов генотерапии, 2) отбор и защита таких больных и 3) этические аспекты трансфекции зародышевых клеток. Обеспечение безопасности больных — основная цель официальных инструкций, регулирующих исследования в области генотерапии (см. ниже). Теоретически возможная трансфекция зародышевых клеток человека вызывает множество этических вопросов. Общество обеспокоено тем, что изменение генетического материала будущих поколений может привести к дискриминации лиц с определенным генотипом. Кроме того, существует опасность, что методы генотерапии будут использованы для немедицинских целей, например для косметических и других изменений организма. Продолжающееся обсуждение среди специалистов, а также в обществе исключительно важно для успеха и распространения генотерапии как стандартной практики.
Обеспокоенность общества и правительства этическими вопросами и безопасностью генотерапии привело к жесткому контролю за такими исследованиями (Wivel and Anderson, 1999). Вначале 1980-х гг. правительственный надзор за исследованиями в этой области в США был поручен Консультативному совету по генной инженерии Национального института здоровья. Этот совет рассматривает все клинические испытания, использующие методы генотерапии, а также обеспечивает обсуждение важнейших научных и этических аспектов генотерапии. Как и в случае других новых методов лечения, для проведения клинических испытаний необходимо получить разрешение ФДА. На местном уровне разрешение на проведение клинических исследований по генотерапии дают две независимые комиссии (наблюдательный совет и совет по биологической безопасности), имеющиеся в медицинских центрах и исследовательских институтах. Задача наблюдательного совета — защитить людей от излишнего риска при применении нового метода лечения, тогда как совет по биологической безопасности следит за соблюдением «Правил проведения исследований в области генной инженерии», принятых Национальным институтом здоровья. Этот механизм обеспечивает строгое соблюдение как правил техники безопасности, так и этических и профессиональных норм при проведении подобных клинических исследований.
Рисунок 5.1. Использование ретровирусного вектора. А. Схема получения ретровирусного вектора. Для получения не способных к репродукции ретровирусных векторов используют специальные линии клеток, способные синтезировать те вирусные белки, гены которых удалены при конструировании вектора. В клетки подходящей линии (например, эмбриональные клетки почки человека) с помощью бактериальных плазмид вводят гены gag (G), pol (Р) и env (Е). Клетки, синтезирующие соответствующие вирусные белки, называют упаковывающими. Затем плазмиду, содержащую рекомбинантную ДНК провируса, в которой вместо генов gag, pol и env находится нужный трансген, используют для трансфекции упаковывающих клеток. Теперь клетки содержат все, что нужно для сборки вирусов, и ретровирусные векторы начинают накапливаться в культуральной среде. Эти векторы содержат трансген, но лишены вирусных генов gag, pol и env, а потому при заражении следующей клетки они не могут репродуцироваться. Б. Экспрессия трансгена в клетке-мишени после внедрения РНК-содержащего ретровирусного вектора (см. «Жизненный цикл»).
== Читайте также ==
*[[Вирусные векторы (генотерапия)]]
*[[Невирусная доставка генов (генотерапия)]]
*[[Эктопический синтез белков (генотерапия)]]
*[[Генотерапия рака (злокачественных опухолей)]]