1
правка
Изменения
→Влияние приема АТФ на физические показатели
== Влияние приема АТФ на физические показатели ==
'''Adenosine-5'-triphosphate (ATP) supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets'''
Переводится
Уже давно признано, что на внутриклеточном уровне АТФ выступает в качестве источника энергии для всех тканей организма [1]. Однако, исследования метаболических функций АТФ на внеклеточном уровне начались не так давно; почти во всех типах клеток АТФ в первую очередь участвует в передаче сигналов посредством пуринергических рецепторов [2]. Другие внеклеточные функции ATФ включают вазодилатацию [3] и притупление восприятия боли [4]. Кроме того, АТФ часто называют рассматривают в качестве медиатора,который,за счёт своего воздействия на периферическую и центральную нервные системы, влияет на местные изменения тканей в процессах нейротрансмиссии и нейромодуляции [5,6].
Концентрация АТФ внутри клетки относительно высокая (1-10 мМ), в то время как вне клеток уровень концентрации крайне низок (10-100 нМ) [7,8]. Когда АТФ попадает в артериальный кровоток в мышцах, период полураспада длится менее 1 секунды [9], так как АТФ быстро распадается до аденозина на эксрессируемые на поверхность клетки энзимы семейства эктонуклеозидов [10]. В крови АТФ в первую очередь переносятся эритроцитами [8]. Таким образом, измерение циркулирующей в плазме свободной ATФ, полученной при пероральном введении не возможно, так как экзогенная свободная АТФ или её метаболит аденозина быстро подхватываются компонентами крови. У крыс, при постоянном пероральном введении АТФ по 5 мг/кг/сут, увеличивалась концентрация АТФ в крови воротной вены, а также поглощение нуклеозидов эритроцитами, что, в свою очередь, привело к увеличению синтеза АТФ в эритроцитах [11]. Поэтому, пероральное введение ATФ может вызывать метаболический эффект, несмотря на отсутствие систематического повышения концентрации свободного АТФ.
Adenosine, resulting from the degradation of ATP, may also act as a signaling agent through purinergic receptors [12] which are ubiquitously present in many cell types including smooth muscle, endothelial, and neural [2]. Adenosine may further be degraded by adenosine deaminase [10]. The labile state of ATP and its metabolite adenosine cause hyperpolarization and vasodilation in the arteriolar tree resulting in increased blood flow through the tissue, which aids in the removal of waste products such as lactate [13]. For example, signaling by both ATP and adenosine plays an important role in increasing blood flow by causing dilation of the microvasculature when released from erythrocytes passing through the capillaries [13,14]. Adenosine’s effect is also mediated by increased nitric oxide and prostacyclin levels in microvascular endothelial cells [15]. Diverting some of the blood flow also assures the most efficient flow of cardiac output through the exercising muscle. In a similar manner, the release of endogenous ATP from cardiomyocytes occurs in response to ischemia [16], thus resulting in increased blood flow and increased oxygen and glucose delivery to the active muscle tissue. These observations lead to the hypothesis that dietary supplementation with ATP (and/or adenosine) should be beneficial to exercising muscle tissue. However, it should be noted that it is unlikely that ATP is absorbed intact in humans [17,18] and the effect of oral ATP on muscle performance is likely due to the previously described purinergic signaling [2] or through ATP metabolites such as adenosine [12,19].
Supporting this hypothesis of purinergic signaling, Calbet et al. demonstrated that infusion of ATP at near-maximal exercise resulted in increased blood flow to less-active and non-muscle tissues [20]. Improving blood flow through less active muscle tissues could remove waste products such as lactate. Additionally, Jordan et al. demonstrated that orally ingested ATP may be metabolically available to tissues and may influence adenine nucleotide metabolism during exercise [21]. The study showed that oral supplementation with ATP (225 mg) for 14 days resulted in increased within group set-one repetitions and increased total lifting volume on the bench press apparatus; however, no effect was observed at the lower dosage of 150 mg ATP per day. The current study was designed to test the hypothesis that supplemental ATP would improve performance of repeated high intensity exercise as measured by muscle torque, power, work and fatigue.
== Исследование ==
The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise.
'''Methods'''
Sixteen participants (8 male and 8 female; ages: 21–34 years) were enrolled in a double-blinded, placebo-controlled study using a crossover design. The participants received either supplemental ATP (400 mg/d divided into 2 daily doses) or placebo for 15 d. After an overnight fast, participants underwent strength and fatigue testing, consisting of 3 sets of 50 maximal knee extensions performed on a Biodex® leg dynamometer.
'''Results'''
No differences were detected in high peak torque, power, or total work with ATP supplementation; however, low peak torque in set 2 was significantly improved (p < 0.01). Additionally, in set 3, a trend was detected for less torque fatigue with ATP supplementation (p < 0.10).
'''Adenosine-5'-triphosphate (ATP) supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets'''
Переводится
Уже давно признано, что на внутриклеточном уровне АТФ выступает в качестве источника энергии для всех тканей организма [1]. Однако, исследования метаболических функций АТФ на внеклеточном уровне начались не так давно; почти во всех типах клеток АТФ в первую очередь участвует в передаче сигналов посредством пуринергических рецепторов [2]. Другие внеклеточные функции ATФ включают вазодилатацию [3] и притупление восприятия боли [4]. Кроме того, АТФ часто называют рассматривают в качестве медиатора,который,за счёт своего воздействия на периферическую и центральную нервные системы, влияет на местные изменения тканей в процессах нейротрансмиссии и нейромодуляции [5,6].
Концентрация АТФ внутри клетки относительно высокая (1-10 мМ), в то время как вне клеток уровень концентрации крайне низок (10-100 нМ) [7,8]. Когда АТФ попадает в артериальный кровоток в мышцах, период полураспада длится менее 1 секунды [9], так как АТФ быстро распадается до аденозина на эксрессируемые на поверхность клетки энзимы семейства эктонуклеозидов [10]. В крови АТФ в первую очередь переносятся эритроцитами [8]. Таким образом, измерение циркулирующей в плазме свободной ATФ, полученной при пероральном введении не возможно, так как экзогенная свободная АТФ или её метаболит аденозина быстро подхватываются компонентами крови. У крыс, при постоянном пероральном введении АТФ по 5 мг/кг/сут, увеличивалась концентрация АТФ в крови воротной вены, а также поглощение нуклеозидов эритроцитами, что, в свою очередь, привело к увеличению синтеза АТФ в эритроцитах [11]. Поэтому, пероральное введение ATФ может вызывать метаболический эффект, несмотря на отсутствие систематического повышения концентрации свободного АТФ.
Adenosine, resulting from the degradation of ATP, may also act as a signaling agent through purinergic receptors [12] which are ubiquitously present in many cell types including smooth muscle, endothelial, and neural [2]. Adenosine may further be degraded by adenosine deaminase [10]. The labile state of ATP and its metabolite adenosine cause hyperpolarization and vasodilation in the arteriolar tree resulting in increased blood flow through the tissue, which aids in the removal of waste products such as lactate [13]. For example, signaling by both ATP and adenosine plays an important role in increasing blood flow by causing dilation of the microvasculature when released from erythrocytes passing through the capillaries [13,14]. Adenosine’s effect is also mediated by increased nitric oxide and prostacyclin levels in microvascular endothelial cells [15]. Diverting some of the blood flow also assures the most efficient flow of cardiac output through the exercising muscle. In a similar manner, the release of endogenous ATP from cardiomyocytes occurs in response to ischemia [16], thus resulting in increased blood flow and increased oxygen and glucose delivery to the active muscle tissue. These observations lead to the hypothesis that dietary supplementation with ATP (and/or adenosine) should be beneficial to exercising muscle tissue. However, it should be noted that it is unlikely that ATP is absorbed intact in humans [17,18] and the effect of oral ATP on muscle performance is likely due to the previously described purinergic signaling [2] or through ATP metabolites such as adenosine [12,19].
Supporting this hypothesis of purinergic signaling, Calbet et al. demonstrated that infusion of ATP at near-maximal exercise resulted in increased blood flow to less-active and non-muscle tissues [20]. Improving blood flow through less active muscle tissues could remove waste products such as lactate. Additionally, Jordan et al. demonstrated that orally ingested ATP may be metabolically available to tissues and may influence adenine nucleotide metabolism during exercise [21]. The study showed that oral supplementation with ATP (225 mg) for 14 days resulted in increased within group set-one repetitions and increased total lifting volume on the bench press apparatus; however, no effect was observed at the lower dosage of 150 mg ATP per day. The current study was designed to test the hypothesis that supplemental ATP would improve performance of repeated high intensity exercise as measured by muscle torque, power, work and fatigue.
== Исследование ==
The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise.
'''Methods'''
Sixteen participants (8 male and 8 female; ages: 21–34 years) were enrolled in a double-blinded, placebo-controlled study using a crossover design. The participants received either supplemental ATP (400 mg/d divided into 2 daily doses) or placebo for 15 d. After an overnight fast, participants underwent strength and fatigue testing, consisting of 3 sets of 50 maximal knee extensions performed on a Biodex® leg dynamometer.
'''Results'''
No differences were detected in high peak torque, power, or total work with ATP supplementation; however, low peak torque in set 2 was significantly improved (p < 0.01). Additionally, in set 3, a trend was detected for less torque fatigue with ATP supplementation (p < 0.10).