1382
правки
Изменения
Нет описания правки
== Выбор антимикробного средства ==
Правильный выбор [[Антибиотики (антимикробные средства)|антимикробного средства]] требует от врача клинического мышления и глубоких знаний в области [[Фармакология|фармакологии ]] и микробиологии. К сожалению, эти препараты часто назначают необдуманно, без учета их фармакологических свойств и предполагаемого возбудителя. Существует три основных вида антимикробной терапии: эмпирическая, направленная против определенного возбудителя и профилактическая. Эмпирическая терапия должна быть направлена против всех вероятных возбудителей, поэтому обычно используют [[Комбинированная антибиотикотерапия|комбинацию антимикробных средств ]] или монотерапию препаратом широкого спектра действия. После определения возбудителя переходят на препарат с более узким спектром действия и минимальными побочными эффектами. Выбирать следует средства, как можно более избирательно действующие на предполагаемого возбудителя и вызывающие как можно меньше побочных эффектов (табл. 43.1).
Назначая антимикробную терапию, в первую очередь нужно убедиться в том, что она вообще необходима. Многие врачи любую лихорадку считают проявлением инфекции и автоматически, без дальнейшего обследования, назначают антимикробные средства. Такая тактика не только нерациональна, но и опасна. Назначение антимикробных средств до взятия материала для посева затрудняет постановку диагноза. Кроме того, они могут вызывать тяжелые побочные эффекты, а при необдуманном применении способствуют отбору устойчивых штаммов. Безусловно, откладывать антимикробную терапию до получения результатов посева часто невозможно. Если состояние больного тяжелое и промедление с лечением может угрожать жизни, антимикробные средства применяют даже в отсутствие четких показаний.
=== Фармакокинетика ===
Активность антимикробного средства in vitro очень важна, но судить по ней об эффективности лечения можно лишь ориентировочно. Не менее существенную роль играют [[Фармакокинетика|фармакокинетические ]] свойства препарата и особенности макроорганизма, от которых зависит, достигнет ли лекарственное средство достаточной бактериостатической или бактерицидной концентрации в очаге инфекции, не вызывая при этом тяжелых побочных эффектов.
Локализация инфекции может в значительной степени определять как выбор антимикробного средства, так и выбор способа введения. Уровень препарата в очаге инфекции должен как минимум достигать МПК, а еще лучше — в несколько раз превышать ее. По некоторым данным, антимикробные средства бывают эффективны и в более низких концентрациях, например за счет стимуляции фагоцитоза (Nosanchuk et al., 1999). Тем не менее нужно всегда стремиться поддерживать достаточную бактерицидную или бактериостатическую концентрацию препарата в интервале между введениями. Для этого нужно хорошо знать основные [[Фармакокинетика: биодоступность, экскреция, клиренс, распределение|фармакокинетические ]] и [[Фармакодинамика|фармакодинамические ]] закономерности (гл. 1 и 2) и уметь применять их на практике.
Проникновение антимикробного средства в очаг инфекции зависит от множества факторов. Если возбудитель находится в СМЖ, препарат должен преодолеть ге-матоэнцефалический гематоэнцефалический [[Барьеры организма|барьер]]. Однако многие лекарственные средства при физиологических значениях pH находятся преимущественно в ионизированной форме и плохо проникают в ЦНС. Другие, например бензилпенициллин, активно выводятся из СМЖ системами активного транспорта анионов, присутствующими в сосудистых сплетениях желудочков мозга. В стационарном состоянии концентрация пенициллинов и цефалоспоринов в СМЖ обычно составляет лишь 0,5—5% сывороточной концентрации этих препаратов. Однако при бактериальных инфекциях проницаемость гематоэнцефа-лического барьера резко возрастает: плотные контакты между эндотелиальными клетками капилляров головного мозга открываются, и в ЦНС легко проникают даже полярные соединения (Quagliarello and Scheld, 1997). Когда воспаление стихает, проницаемость гематоэнцефа-лического гематоэнцефалического барьера возвращается к исходному уровню. В СМЖ при этом могут оставаться жизнеспособные микроорганизмы, поэтому, несмотря на улучшение состояния больного, дозы антимикробных средств не снижают до тех пор, пока СМЖ не станет стерильной.
Большинство антимикробных средств проникают в очаг инфекции путем простой диффузии, и их концентрация там пропорциональна концентрации свободного препарата в плазме или во внеклеточной жидкости. Связывание с белками снижает концентрацию лекарственного средства в очаге инфекции и препятствует взаимодействию с мишенью.
Дозу и частоту введения обычно подбирают так, чтобы поддерживать достаточную концентрацию антимикробного средства в инфекционном очаге в интервале между введениями. Впрочем, существует и другая точка зрения, согласно которой терапевтический эффект достигается за счет обеспечения высокой максимальной сывороточной концентрации, снижающейся затем до уровня ниже МПК. Преимущества того или иного способа отчасти определяются характером активности препарата — дозо-или времязависимым (Craig, 1998). Так, активность βлак-тамных антибиотиков зависит от времени их воздействия, а активность [[Аминогликозиды|аминогликозидов ]] — от концентрации в очаге инфекции. В экспериментах на животных показано, что прерывистое лечение менингита β-лактамными антибиотиками более эффективно (Tauber et al., 1989). При других экспериментальных инфекциях, по-видимому, предпочтительнее поддерживать постоянную концентрацию препарата. Аминогликозиды оказались более эффективными при введении всей суточной дозы за один раз, а не в несколько приемов. Более того, при таком режиме лечения реже возникали побочные эффекты (Gilbert, 1991; Barclay et al., 1999).
=== Особенности макроорганизма ===
==== Состояние иммунитета ====
Важнейший фактор, от которого зависит успех лечения, — состояние клеточного и гуморального иммунитета. При иммунодефиците даже самая грамотная антимикробная терапия может оказаться безрезультатной. Если защитные механизмы не нарушены, для излечения часто бывает достаточно бактериостатического действия. Если же по тем или иным причинам они не срабатывают, необходимы бактерицидные препараты. Это происходит, например, при инфекционном эндокардите, когда фагоциты не могут проникнуть в вегетации; при менингите, когда фагоцитоз затруднен из-за недостатка опсонинов; при диссеминированных бактериальных инфекциях у больных с нейтропенией, когда снижено число фагоцитов. Из-за недостаточности клеточного иммунитета у больных [[Препараты для лечения ВИЧ-инфекции|СПИДом антимикробная терапия ]] обычно лишь подавляет оппортунистические инфекции, но не излечивает их. Так, вызванная сальмонеллами бактериемия часто рецидивирует даже после длительной терапии (Jacobson et al., 1989), а при диссеминированной инфекции, вызванной атипичными микобактериями, лечение должно быть пожизненным.
==== Особенности инфекционного очага ====
Эффективность антимикробной терапии зависит и от местных факторов, действующих в очаге инфекции. Так, при гнойной инфекции активность препаратов существенно снижается, поскольку содержащиеся в гное фагоциты, остатки клеток и белки связывают антимикробные средства или создают неблагоприятные для их действия условия (Bamberger et al., 1993; Konig et al., 1998). Свободный гемоглобин в reматомах связывает [[пенициллины ]] и [[тетрациклины ]] (Craig \ and Kunin, 1976). При низком pH, характерном для отграниченных очагов инфекции (абсцессы, плевральная полость, СМЖ, мочевые пути), уменьшается активность аминогликозидов, эритромицина и клиндамицина [[клиндамицин]]а (Stra-usbaugh and Sande, 1978). Другие препараты, например хлортетрациклин, нитрофурантоин и метенамин, напротив, в кислой среде более активны. В анаэробных условиях (например, в абсцессах) ослабляется активность аминогликозидов (Verklin and Mandell, 1977). При плохом кровоснабжении затрудняется проникновение антимикробных средств в очаг инфекции. В подобных случаях одной антимикробной терапии бывает недостаточно. Например, абсцессы обязательно дренируют.
Сильно осложняет антимикробную терапию инородное тело в инфекционном очаге. Такие инфекции плохо поддаются лечению и часто рецидивируют даже при длительном применении антимикробных средств в высоких дозах. Излечение обычно наступает только после удаления инородного тела. Тому есть несколько причин. Имплантируемые устройства (например, протезы клапанов, сосудов и суставов, электрокардиостимуляторы, сосудистые и ликворотводящие шунты) воспринимаются фагоцитами как чужеродные. При попытке фагоцитоза этих устройств происходит дегрануляция фагоцитов, истощающая запасы бактерицидных веществ. В результате бактерицидная активность фагоцитов снижается (Zimmerli et al., 1984). По некоторым данным, бактерии, прикрепленные к инородному телу, теряют чувствительность к бактерицидным антибиотикам (Chuard et al., 1991).
В некоторых случаях бактерии могут выживать внутри фагоцитов, где они защищены от действия антимикробных средств, плохо проникающих в клетки. Внутри фагоцитов могут выживать не только внутриклеточные паразиты (Salmonella spp.. Brucella spp.. Toxoplasma gondii, Listeria spp., Mycobacterium tuberculosis), но и, например, Staphylococcus aureus. В таких случаях применяют препараты. которые хорошо проникают внутрь клетки и достигают там бактериостатической или бактерицидной концентрации ([[Хинолоны и мочевые антисептики|фторхинолоны]], [[изониазид]], триметопим/сульфаметоксазол, [[рифампицин]]).
==== Особенности элиминации антимикробных средств ====
При назначении антимикробных средств необходимо учитывать и особенности их элиминации у данного больного. В первую очередь это касается препаратов, которые в высокой концентрации вызывают тяжелые побочные эффекты. Многие антимикробные средства или их метаболиты выводятся преимущественно почками. При почечной недостаточности дозы таких препаратов корректируют в соответствии со специальными номограммами (см. главы, посвященные отдельным группам антимикробных средств, а также Приложение 11). Особую осторожность нужно соблюдать в отношении аминогликозидов, ванкомицина [[ванкомицин]]а и фторцитозина. Эти препараты выводятся только с мочой, а их побочные эффекты зависят от концентрации в сыворотке и тканях. При развитии нефротоксического действия почечная недостаточность усугубляется, и замыкается порочный круг. При печеночной недостаточности снижают дозы антимикробных средств, выводящихся с желчью или метаболизируюшихся в печени (таких, как эритромицин, хлорамфеникол, метронидазол, клиндамицин).
'''Возраст'''. Эго один из важных факторов, от которых зависят фармакологические свойства антимикробных средств (гл. 1). Например, у новорожденных, особенно недоношенных, значительно снижены почечная [[Экскреция (выведение) лекарственных средств|экскреция ]] и печеночный [[метаболизм лекарственных средств]]. Невнимание к возрастным особенностям фармакокинетики может привести к пагубным последствиям. Ярким примером тому служит серый синдром, возникающий у новорожденных при назначении хлорамфе н и кола (гл. 47)хлорамфеникола . У пожилых почечная экскреция лекарственных средств снижена из-за возрастного уменьшения СКФ. С возрастом замедляется и метаболизм препаратов в печени. Поэтому у пожилых сывороточная концентрация препарата оказывается выше, чем у молодых, иногда достигая токсического уровня. К тому же у пожилых побочные эффекты (например, ототоксический эффект аминогликозидов) могут возникать и при терапевтических концентрациях лекарственных средств.
От возраста зависит не только выраженность, но и характер побочного действия. Тетрациклинам свойственно высокое сродство к формирующимся зубам и растущим костям, поэтому у детей эти препараты вызывают задержку роста костей, стойкое пожелтение зубов и гипоплазию эмали. Фторхинолоны тоже нарушают рост костей, накапливаясь в растущих хрящах. Сульфаниламиды конкурируют с билирубином за связывание с альбумином и могут вызвать билирубиновую энцефалопатию у новорожденных. Свойственная пожилым и детям младшего возраста низкая кислотность желудочного содержимого влияет на всасывание антимикробных средств (например, всасывание бензилпенициллина усиливается, а кетоконазола — снижается); то же касается и больных, принимающих антациды.