Открыть главное меню

SportWiki энциклопедия β

Изменения

Нет описания правки
Выносливость мышц в значительной степени зависит от сократительных свойств мышечных белков. В результате регулярной тренировки на выносливость меняется профиль экспрессии изоформ белков, типичных для тех или иных мышечных волокон. Например, при регулярной аэробной нагрузке повышается экспрессия медленных тяжелых цепей миозина (Myosin heavy chain Type I, MHC-I)<ref>JennischeE. Ischaemia-induced injury in glycogen-depleted skeletal muscle. Selective vulnerability of FG-fibres. Acta Physiologica Scandinavica. 1985; 125(4): 727-734.</ref>. Изменения белковых структур сопровождаются изменениями функциональных свойств мышц, например замедляется скорость [[Сокращение скелетных мышц|сокращения]] с одновременным улучшением сопротивляемости [[Утомление и утомляемость|утомлению]]. Так, в мышцах высокопрофессиональных спортсменов, занимающихся видами спорта на выносливость, наблюдается в среднем более высокая доля медленных волокон типа I и, помимо изоформ белка, другие феномены функциональной адаптации. Эксперименты с временной иммобилизацией показывают, что обездвиживание положительно влияет на мышцы с преобладанием волокон [[Типы мышечных волокон|типа II]], в то время как любая форма тренировки на выносливость стимулирует развитие мышечных волокон типа I.
[[Image:Mishci_sport134.jpg|250px|thumb|right|Рис. 3.111. Схематическое изображение отдельных типов мышечных волокон и возможных видов их трансформации]]
При изменении изоформ белка происходит изменение активности аденозинтрифосфатазы (АТФазы). АТФаза — это фермент, который способствует превращению [[АТФ]] в АДФ и фосфат. В результате регулярной тренировки на выносливость активность АТФазы снижается, что ведет к уменьшению интенсивности потока энергии, т. е. [[Энергетические процессы в мышце|энергетического обмена]] на единицу времени. Ранее предполагалось, что активность АТФазы в значительной степени зависит от различий изоформ белка (тяжелых цепей миозина МНС-II с высокой активностью АТФазы или МНС-I с низкой активностью АТФазы), но последние исследования не смогли этого точно подтвердить. Изменения активности АТФазы, по всей видимости, не зависят от трансформации белковых структур.
=== Субстратное депо и транспортные белки ===
Для длительного беспрерывного обеспечения тканей АТФ помимо эффективного транспорта кислорода необходимы энергетические субстраты. Одним из адаптационных механизмов в этом случае является увеличение субстратного депо в мышцах спортсмена. Так, исследования, при которых проводилось сравнение двух ног — одной нетренированной и второй тренированной, — было подтверждено 25%-е повышение концентрации гликогена в цитоплазме мышечных волокон<ref>Piehl K., Karlsson J. Glycogen synthetase and phosphoryla-se activity in slow and fast twitch skeletal muscle fibres in man. Acta Physiologica Scandinavica. 1977; 100(2): 210-214.</ref>. Также было подтверждено увеличение депо мышечного [[гликоген]]а у пловцов высокого класса и бегунов на длинные дистанции. Повышение содержания гликогена объясняется помимо всего прочего увеличением числа молекул — переносчиков гликогена, таких как GLUT-4, а также повышенной активностью гликогенсинтетазы<ref name="Juel" />. В результате у высокотренированных спортсменов перенос глюкозы в мышцах, а также синтез гликогена поддерживаются в течение длительного времени и в период после нагрузки. В результате регулярной тренировки на выносливость увеличивается также внутримышечное липидное депо. Характерным является расположение капель жира в непосредственной близости от митохондрий, что позволяет быстро мобилизовать липиды при нагрузке. Большие внутриклеточные накопления липидов наблюдаются также в мышцах у лиц с сахарным диабетом 2-го типа и людей с избыточной массой тела. У них, однако, как правило, не наблюдается увеличения массы митохондрий (рис. 3.122)<ref>HoppelerH., FluckM. Plasticity of skeletal muscle mitochondria: structure and function Medicine & Science in Sports & Exercise. 2003; 35(1): 95-104.</ref>.[[Image:Mishci_sport135.jpg|250px|thumb|right|рис. 3.12 2 Адаптация мышц к тренировки на выносливость. На поперечном сечении мышечного волокна между миофибриллами видны липидные пузырьки вместе с митохондриями]]
Исследования также подтвердили, что в тренированных мышцах увеличивается количество мембранных белков не только для переноса глюкозы, но и для транспорта жирных кислот. Так, в мышцах, тренированных на выносливость, наблюдается вдвое больше белков, связывающих жирные кислоты (FABP4 — fatty acid binding protein 4). Уже через 3 нед. интенсивной тренировки на выносливость регистрируется повышение FABP4 почти на 50 %<ref>Kiens B. Effect of endurance training on fatty acid metabolism: local adaptations. Medicine & Science in Sports Sc Exercise 1997; 29(5): 640-645.</ref>. Предполагают, что эти адаптационные процессы оказывают положительное влияние на транспорт жиров через сарколемму. Это позволяет спортсменам, тренирующим выносливость, более эффективно использовать жирные кислоты для аэробного обмена веществ.

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция