Редактирование: Молекулярное действие лекарств (молекулярные мишени)
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 1: | Строка 1: | ||
== МОЛЕКУЛЯРНОЕ ДЕЙСТВИЕ ЛЕКАРСТВ == | == МОЛЕКУЛЯРНОЕ ДЕЙСТВИЕ ЛЕКАРСТВ == | ||
− | '''Мишень''' — это молекула с центром связывания для лекарства. Эта молекула может содержать мембранные белки, распознающие гормоны или нейротрансмиттеры (рецепторы), а также ионные каналы, нуклеиновые кислоты, молекулы-переносчики или ферменты. Но не все лекарства действуют на [[рецепторы]]. | + | '''Мишень''' — это молекула с центром связывания для лекарства. Эта молекула может содержать мембранные белки, распознающие гормоны или нейротрансмиттеры (рецепторы), а также ионные каналы, нуклеиновые кислоты, молекулы-переносчики или ферменты. Но не все лекарства действуют на [[рецепторы]] (см. далее). |
Большинство лекарств должны связаться с молекулярной мишенью, чтобы произвести эффект, но существуют и исключения. Уже в первых исследованиях эффектов лекарств на тканях животных в конце XIX в. стало ясно, что большинство лекарств реализуют специфическое действие в определенных тканях, т.е.: | Большинство лекарств должны связаться с молекулярной мишенью, чтобы произвести эффект, но существуют и исключения. Уже в первых исследованиях эффектов лекарств на тканях животных в конце XIX в. стало ясно, что большинство лекарств реализуют специфическое действие в определенных тканях, т.е.: | ||
Строка 8: | Строка 8: | ||
*лекарство может оказывать совершенно разные эффекты на разные ткани. | *лекарство может оказывать совершенно разные эффекты на разные ткани. | ||
− | Например, алкалоид пилокарпин, как и нейротрансмиттер | + | Например, алкалоид пилокарпин, как и нейротрансмиттер ацетилхолин (см. главу 8), вызывает сокращение гладких мышц кишечника и тормозит частоту сердечных сокращений. С учетом этих феноменов Сэмуэль Лэнгли (1852-1925) в 1878 г., основываясь на изучении эффектов алкалоидов пилокарпина и атропина на слюноотделение, предположил, что «существуют некие рецепторные вещества... с которыми оба могут образовывать соединения». Позже, в 1905 г., изучая действие никотина и кураре на скелетные мышцы, он обнаружил, что никотин вызывает сокращения, когда действует на определенные небольшие участки мышц. Лэнгли заключил, что «рецепторная субстанция» для никотина находится в этих участках и что кураре действует путем блокады взаимодействия никотина с рецептором. |
Считается, что Пауль Эрлих (1854-1915) самостоятельно разработал теорию рецепторов, наблюдая, как многие органические красители селективно окрашивают специфические компоненты клетки. В 1885 г. он предположил, что у клеток есть «боковые цепи», или «рецепторы», к которым лекарства или токсины могут присоединяться, реализуя свое действие. До сих пор Эрлих известен благодаря своей идее о «волшебной пуле» — химическом соединении, образованном для выявления селективной токсичности, например, инфекционного агента. Кроме того, Эрлих синтезировал органические производные мышьяка, которые использовали ранее при лечении сифилиса. Развивая теорию рецепторов, Эрлих был первым, кто показал, что быстрая обратимость действия алкалоидов свидетельствует о непрочных (нековалентных) химических связях между лекарством и рецепторами. | Считается, что Пауль Эрлих (1854-1915) самостоятельно разработал теорию рецепторов, наблюдая, как многие органические красители селективно окрашивают специфические компоненты клетки. В 1885 г. он предположил, что у клеток есть «боковые цепи», или «рецепторы», к которым лекарства или токсины могут присоединяться, реализуя свое действие. До сих пор Эрлих известен благодаря своей идее о «волшебной пуле» — химическом соединении, образованном для выявления селективной токсичности, например, инфекционного агента. Кроме того, Эрлих синтезировал органические производные мышьяка, которые использовали ранее при лечении сифилиса. Развивая теорию рецепторов, Эрлих был первым, кто показал, что быстрая обратимость действия алкалоидов свидетельствует о непрочных (нековалентных) химических связях между лекарством и рецепторами. | ||
Строка 401: | Строка 401: | ||
== Транспортеры, симпортеры, антипортеры и насосы == | == Транспортеры, симпортеры, антипортеры и насосы == | ||
− | |||
− | Во всех клетках постоянно регулируются внутренние концентрации ионов, а также таких молекул, как сахара, нуклеиновые кислоты и аминокислоты. Их проход через клеточные мембраны происходит за счет молекул-переносчиков, независимых от энергии (транспортеры, симпортеры и антипортеры) и зависимых от энергии насосов. Все они представлены ориентированными белками, слабо связывающимися с одним или несколькими ионами или молекулами. Связывание изменяет конформацию белка, и он переходит из состояния покоя в активированное состояние. Изменение конформации переносит субстрат через мембрану. В насосах изменение конформации превращает белок в фермент, который в норме гидролизует АТФ (зависимость активности от энергии), а гидролиз АТФ необходим для насоса, чтобы перенести субстрат. Насосы и переносчики могут быть молекулярными мишенями для определенных лекарств. В книге для обозначения энергонезависимых переносчиков использованы особые значки (рис. 2.21) и насосов (рис. 2.22). | + | Во всех клетках постоянно регулируются внутренние концентрации ионов, а также таких молекул, как сахара, нуклеиновые кислоты и аминокислоты. Их проход через клеточные мембраны происходит за счет молекул-переносчиков, независимых от энергии (транспортеры, симпортеры и антипортеры) и зависимых от энергии насосов. Все они представлены ориентированными белками, слабо связывающимися с одним или несколькими ионами или молекулами. Связывание изменяет конформацию белка, и он переходит из состояния покоя в активированное состояние. Изменение конформации переносит субстрат через мембрану. В насосах изменение конформации превращает белок в фермент, который в норме гидролизует АТФ (зависимость активности от энергии), а гидролиз АТФ необходим для насоса, чтобы перенести субстрат. Насосы и переносчики могут быть молекулярными мишенями для определенных лекарств. В книге для обозначения энергонезависимых переносчиков использованы особые значки (рис. 2.21) и насосов (рис. 2.22). |
'''''Описание к рис. 2.21''' Значки, обозначающие энергонезависимый переносчик (транспортер, симпортер, антипортер), (а) Транспортер и симпортер (характеризуются ненаправленным транспортом) в неактивном состоянии. (6) Антипортер (характеризуется двусторонним транспортом) в активированном состоянии.'' | '''''Описание к рис. 2.21''' Значки, обозначающие энергонезависимый переносчик (транспортер, симпортер, антипортер), (а) Транспортер и симпортер (характеризуются ненаправленным транспортом) в неактивном состоянии. (6) Антипортер (характеризуется двусторонним транспортом) в активированном состоянии.'' | ||
+ | |||
+ | Рис. 2.22 Значки, обозначающие насос. | ||
=== Энергонезависимые транспортеры, симпортеры и антипортеры === | === Энергонезависимые транспортеры, симпортеры и антипортеры === | ||
Строка 421: | Строка 422: | ||
== Ферменты == | == Ферменты == | ||
− | |||
В организме содержится большое количество ферментов, каждый из которых является потенциальной молекулярной мишенью для лекарств. | В организме содержится большое количество ферментов, каждый из которых является потенциальной молекулярной мишенью для лекарств. | ||
Строка 429: | Строка 429: | ||
Лекарства, которые связываются с ферментом в связывающем центре, обычно являются конкурентными ингибиторами (по аналогии с конкурентными антагонистами — лекарствами, связывающимися с рецепторами конкурентным образом). Однако другие лекарства связываются в других центрах. Это может вести к подавлению фермента через аллостерические механизмы или посредством разрыва биохимической целостности фермента, что соответствует неконкурентоспособному и неконкурентному рецепторному антагонизму (см. далее). | Лекарства, которые связываются с ферментом в связывающем центре, обычно являются конкурентными ингибиторами (по аналогии с конкурентными антагонистами — лекарствами, связывающимися с рецепторами конкурентным образом). Однако другие лекарства связываются в других центрах. Это может вести к подавлению фермента через аллостерические механизмы или посредством разрыва биохимической целостности фермента, что соответствует неконкурентоспособному и неконкурентному рецепторному антагонизму (см. далее). | ||
+ | |||
+ | Рис. 2.23 Значки, обозначающие фермент. | ||
'''Ацетилхолинэстераза — пример фермента, представляющего собой мишень для лекарств''' | '''Ацетилхолинэстераза — пример фермента, представляющего собой мишень для лекарств''' | ||
Строка 458: | Строка 460: | ||
== Молекулярные мишени вне клеток == | == Молекулярные мишени вне клеток == | ||
− | |||
Некоторые препараты реализуют свой терапевтический эффект без прямого взаимодействия с клетками, например: | Некоторые препараты реализуют свой терапевтический эффект без прямого взаимодействия с клетками, например: | ||
Строка 472: | Строка 473: | ||
== Механизмы действия лекарств на рецепторы, ионные каналы, переносчики и ферменты == | == Механизмы действия лекарств на рецепторы, ионные каналы, переносчики и ферменты == | ||
− | + | ||
Механизмы действия лекарств на молекулярные мишени приведены на рис. 2.24. Примеры молекулярных мишеней перечислены в табл. 2.3. | Механизмы действия лекарств на молекулярные мишени приведены на рис. 2.24. Примеры молекулярных мишеней перечислены в табл. 2.3. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |