1078
правок
Изменения
→Окислительное фосфорилирование в митохондриях
=== Окислительное фосфорилирование в митохондриях ===
Аэробный энергетический обмен происходит в митохондриях и приводит к наибольшему выходу энергии. Как следует из названия, для этого процесса требуется кислород. '''Аэробный [[гликолиз]] ''' - наиболее эффективный способ образования энергии. В анаэробных условиях только 2 моль [[АТФ]] синтезируется из 1 моль [[гликоген]]а, в то время как в присутствие кислорода 38 моль АТФ может синтезироваться из того же количества гликогена (рис. 3). Чистый выход АТФ 36 моль, за вычетом потраченных 2 моль АТФ (38 молекул в сердечной мышце, столько же в почках и печени). В митохондриях мышечных клеток атомы водорода выделяются из восстановленных веществ, которые образуются в ходе цикла трикарбоновых кислот, в процессе, называемом окислительным фосфорилированием. Специальные белковые комплексы, переносящие электроны, передают электроны от атома водорода молекуле кислорода. Энергия, высвобождаемая во время транспорта электронов, сохраняется в виде АТФ. Электроны по дыхательной цепи переносятся в порядке повышения окислительно-восстановительного потенциала -от более электроотрицательного вещества к более электроположительному кислороду.
В клетках при высоком парциальном давлении кислорода потребность в энергии определяет уровень митохондриального дыхания, а снабжение субстратами определяет энергетический уровень клетки, при котором достигается этот уровень митохондриального дыхания. Запас АТФ и КФ мало сравним с количеством энергии, которая требуется для активной мышечной работы. Из-за малого запаса макроэргических фосфатов АТФ может тратиться больше или меньше, чем синтезироваться, лишь в небольшие промежутки времени. Таким образом, синтез АТФ должен происходить, когда обычно клеточные процессы гидролизуют АТФ. Поэтому митохондриальное окислительное фосфорилирование тесно связано с несколькими обменными путями и быстро отвечает на изменения в клеточных потребностях в АТФ. Однако связь дыхательной цепи с другими обменными процессами не столь высокая. Было подсчитано, что около 1~3% кислорода, поступившего в дыхательную цепь в состоянии покоя, выходит из нее в виде пероксида. Образование высокореакционноспособных частиц кислорода может иметь некоторое влияние, как в состоянии покоя, так и при физических нагрузках.