Открыть главное меню

SportWiki энциклопедия β

Изменения

Почки

558 байт добавлено, 9 лет назад
Нет описания правки
{{Шаблон:КлинПодход}}
== ФИЗИОЛОГИЯ ПОЧЕК ==
[[Image:Ph_12_1.jpg|250px|thumb|right|Рис. 12.1 Строение почки. Почка состоит ив коркового вещества и мозгового вещества, делящегося на пирамиды.]]
'''Главные функции почек''':
* регуляция pH в организме.
Система выделения включает почки, мочевыводящие пути и мочевой пузырь, где моча накапливается перед выделением через уретру (см. главу 17).
'''Почка имеет две области: корковую и мозговую'''
Функциональная единица каждой почки — нефрон. Каждая почка содержит ~ 1 млн нефронов. Нефрон — закрытая с одного конца трубка, образующая капсулу Боумена, окружающую капиллярный узел (клубочек). Клубочковые капилляры получают кровь из приносящей артериолы — резистивного кровеносного сосуда. Кровь покидает клубочек не через вену (емкостный сосуд), а через второй резистивный сосуд — выносящую артериолу. Такое устройство приносящих и выносящих сосудов почки формирует гидростатическое давление, осуществляющее ультрафильтрацию (см. далее). Другие части нефрона — проксимальный каналец, петля Генле, дистальный каналец и собирательная трубочка (см. рис. 12.6). Множество дистальных канальцев соединяются в собирательные трубочки, которые сливаются перед выходом в почечные чашечки, и, наконец, в почечную лоханку.
 
Рис. 12.1 Строение почки. Почка состоит ив коркового вещества и мозгового вещества, делящегося на пирамиды.
'''Существует два вида нефронов: корковые и юкстамедуллярные'''
* Юкстамедуллярные нефроны (15% всех нефронов) имеют клубочки во внутренней 1/3 коры с длинными петлями Генле, уходящими глубоко в мозговое вещество (см. рис. 12.6), и отвечают за образование гипертонической жидкости в пределах тканевого мозгового вещества. Выносящие артериолы юкстамедуллярных нефронов дают начало околоканальцевым капиллярам, а также формируют ряд сосудистых петель, которые спускаются в мозговое вещество и окружают петлю Генле.
''''''Моча ''' — модифицированный ультрафильтрат плазмы, продуцируемый тремя фильтрационными барьерами'''
Давление крови, обусловливающие ультрафильтрацию (т.е. фильтрацию молекул небольшого размера), — клубочковое гидростатическое капиллярное давление. Это давление зависит от отношения сопротивления в приносящей артериоле к сопротивлению в выносящей артериоле. В отличие от других сосудистых систем присутствие выносящей артериолы гарантирует, что гидростатическое давление в клубочковых капиллярах уменьшается по их длине постепенно.
* подоциты — специализированные клетки капсулы Боумена с многочисленными отростками, покрывающими базальную мембрану. Промежутки между связанными друг с другом отростками смежных подоцитов образуют еще один барьер для отрицательно заряженных макромолекул (см. рис. 12.2).
[[Image:Ph_12_2.jpg|250px|thumb|right|Рис. 12.2 Строение гломерулярного (клубочкового) фильтра. Барьерами для ультрафильтрации в клубочке являются капиллярный эндотелий, базальная мембрана и промежутки между отростками подоцитов.]]
Молекулы массой 70 кДа и более не могут подвергаться ультрафильтрации. Они остаются в клубочковых капиллярах приносящих сосудов. Напротив, молекулы менее 7 кДа (например, глюкоза, аминокислоты, ионы Na+ и К+) свободно фильтруются и поступают в ближайшую трубочку в концентрациях, сходных с концентрацией в крови.
Ультрафильтрат поступает в почечные канальцы и там модифицируется серией реабсорбционных и секреторных процессов на протяжении всей длины нефрона (рис. 12.3). Эти процессы используют следующие транспортные механизмы:
*активный транспорт, расходующий энергию гидролиза [[АТФ ]] (см. рис. 12.3);
* простую диффузию с использованием трансклеточных (через клетки) или параклеточных (через плотные связки между клетками) путей;
* контртранспорт веществ в противоположных направлениях (антипорт).
 [[Image:Ph_12_3.jpg|250px|thumb|right|Рис. 12.2 Строение гломерулярного (клубочкового) фильтра. Барьерами для ультрафильтрации в клубочке являются капиллярный эндотелий, базальная мембрана и промежутки между отростками подоцитов.3]]''Рис. 12.3 Транспортные механизмы в клетках почечных канальцев. Растворы перемещаются по клеткам с помощью активного транспорта (процесс, включающий гидролиз АТФ) (1); с помощью диффузии (2, В); по ионным каналам (4-7); с помощью контртранспорта (через мембрану в противоположном направлении) (8, 9) и котранспорта (через мембрану в том же направлении) (10, 11). АДФ — аденозиндифосфат; АТФ — аденозинтрифосфат.''
Белки ионного канала формируют поры в мембранах, позволяя проходить ионам Na+ или К+. Транспортные белки также могут проходить через мембрану, увлекая за собой несколько ионов или молекул. После связывания молекула транспортера конформационно изменяется. Подобное движение ионов через мембрану требует конформационного изменения ионного канала, поэтому транспортные белки перемещают ионы по мембранам клеток примерно в 1000 раз медленней, чем по каналам.
Многие транспортные механизмы непосредственно не связаны с гидролизом АТФ, но зависят от электрохимических градиентов активного транспорта Na+ и К+ через базолатеральную мембрану. Градиент создается Nа+/К+-АТФазой, которая выкачивает из клетки три иона Na+ и закачивает два иона К+ (см. главу 13). Nа+/К+-АТФаза запускает реабсорбцию Na+ и котранспорт веществ типа глюкозы через апикальную мембрану. Детально транспортные механизмы в различных отделах нефрона описаны далее в связи с механизмами действия мочегонных лекарственных средств.
== ПАТОФИЗИОЛОГИЯ ПОЧЕК И ТЕРАПЕВТИЧЕСКИЕ ЦЕЛИ ==
=== Регуляция водного обмена ===
'''Диурез ''' — процесс увеличения объема мочи, которым управляют гомеостатические механизмы тела и на который можно повлиять с помощью лекарств. Мочегонные средства — лекарства, увеличивающие выделение почками Na+, Cl" и воды. Механизм действия многих диуретиков заключается в уменьшении реабсорбции Na+, следствием чего будет увеличенная потеря Сl и воды. Сульфаниламиды — мочегонные средства (рис. 12.5), обладающие не только мочегонным, но и антидиабетическим эффектами.
Все мочегонные средства, кроме осмотических, действуют непосредственно на клетки почечных канальцев на определенных участках нефрона (рис. 12.6). Для большинства этих лекарств механизм действия локализован на апикальной мембране клеток канальцев, действие препаратов проявляется после гломерулярной фильтрации мочегонного средства в проксимальный каналец. Исключение — антагонисты альдостерона, которые действуют на свои внутриклеточные мишени после диффузии через базолатеральную мембрану дистальных канальцев.
Карбоангидраза расположена в цитоплазме проксимальных клеток канальцев и в апикальной мембране клетки. Этот фермент участвует в реабсорбции натрия и бикарбоната, как показано на рис. 12.7. Ацетазоламид может максимально увеличить выделение Na+ на 5%, но обычно оно увеличивается на 1% или еще меньше. Ассоциированная потеря бикарбоната с мочой приводит к ее закислению и, как следствие, метаболическому ацидозу. Однако развитие метаболического ацидоза самоограничивается по мере того, как уменьшается количество бикарбоната. Кроме того, усиление диуреза с помощью ацетазоламида краткосрочно, т.к. уменьшение фильтрации бикарбоната понижает эффективность препарата в отношении подавления реабсорбции Na+. Как и другие мочегонные средства, которые вызывают увеличение транспорта Na+ в собирательные трубочки, ацетазоламид увеличивает выделение К+, что может привести к гипокалиемии (табл. 12.1-12.3).
Ацетазоламид может уменьшить отеки при застойной сердечной недостаточности, но с этой целью его применяют редко. Ацетазоламид главным образом используют не в связи с заболеваниями почек, а, например, при глаукоме, когда подавление карбоангидразы уменьшает образование внутриглазной жидкости (см. главу 19).
=== Петлевые диуретики ===
[[Image:Ph_12_5.jpg|250px|thumb|right|Рис. 12.5 Химическая структура препаратов, представляющих каждый класс диуретиков. Компонент сульфонамида выделен жирным шрифтом.]]Исследования аналогов сульфонамида привели к разработке подгруппы диуретиков, действующих на петлю Генле. К этим [[Петлевые диуретики|петлевым мочегонным средствам ]] относят фуросемид (см. рис. 12.5), буметанид и торсемид. Этакриновая кислота, производное феноксиуксусной кислоты, оказывает диуретический эффект на петлю Генле, ингибируя котранспорт ионов Na+, К+ и Сl' (стехиометрия 1:1:2) через апикальную мембрану толстой части восходящей петли Генле, связывая и подавляя образование специфического транспортного белка (буметанид-чувствительный котранспорт-1) (рис. 12.8). Петлевые диуретики — самые эффективные из всех мочегонных средств: способны увеличить выделение Na+ на 15-25%. Рис. 12.5 Химическая структура препаратов, представляющих каждый класс диуретиков. Компонент сульфонамида выделен жирным шрифтом.
Толстая часть восходящей петли Генле непроницаема для воды, поэтому движение ионов Na+ и Сl- в тканевом веществе мозгового вещества (см. рис. 12.6) без сопутствующей воды увеличивает осмотическое давление в этой области. Высокое осмотическое давление в тканевом веществе вызывает реабсорбцию воды из собирательных трубочек, но только в присутствии антидиуретического гормона (типа вазопрессина) (см. далее). Петлевые диуретики ингибируют реабсорбцию воды из собирательных трубочек путем уменьшения ионной концентрации в тканевом веществе.
[[Image:Ph_12_6.jpg|250px|thumb|right|Рис. 12.6]]
''Рис. 12.6 Нефрон, собирательные трубочки и места действия диуретических средств. Основные функциональные единицы почек — это нефроны, фильтрующие кровь в клубочках. Полученный инфильтрат модифицируется серией реабсорбтивных и секреторных процессов по мере прохождения по нефрону перед тем, как попасть в собирательные трубочки и затем в почечную лоханку.''
Реабсорбция Са2+ и Mg2+ также подавляется петлевыми диуретиками, т.к. абсорбция этих ионов вызывается мембран-положительным потенциалом, возникающим при транспорте К+ через апикальную мембрану по К+-селективным ионным каналам (см. рис. 12.8). Петлевые диуретики увеличивают поставку Na+ в собирательные трубочки, что усиливает выделение К+ и Н+, приводя к гипокалиемическому алкалозу (см. далее).
Петлевые диуретики — водорастворимые слабые кислоты, в лечебных концентрациях высокосвязанные с альбумином плазмы крови (> 90%). Фуросемид в основном выделяется почками в результате транспорта в проксимальных канальцах (см. табл. 12.3). Буметанид и торсемид в значительной степени перерабатываются в печени, поэтому при почечной недостаточности накапливаются меньше, чем фуросемид, и, значит, риск побочного действия буметанида и торсемида меньше.
Кроме мочегонного действия, петлевые диуретики косвенно оказывают венорасширяющее действие из-за изменения выработки почками регуляторных веществ (вероятнее всего простагландина). Это приводит к снижению давления в полости левого желудочка сердца и помогает снизить отек легких.
 
Рис. 12.6 Нефрон, собирательные трубочки и места действия диуретических средств. Основные функциональные единицы почек — это нефроны, фильтрующие кровь в клубочках. Полученный инфильтрат модифицируется серией реабсорбтивных и секреторных процессов по мере прохождения по нефрону перед тем, как попасть в собирательные трубочки и затем в почечную лоханку.
Фуросемид (в дозе 20-80 мг внутрь) действует в течение часа; его эффект завершается в течение 6 час. Таким образом, фуросемид можно принимать 2 раза в день, не опасаясь, что диурез приведет к нарушению сна. Дозировка 1 раз в день оставляет 18-часовой промежуток, когда почки могут повторно поглощать Na+, восстанавливая задержку Na+, которая может быть достаточно сильной, чтобы свести на нет предшествующий диурез. Этого можно избежать, если вводить фуросемид путем непрерывной внутривенной инфузии.
[[Image:Ph_12_7.jpg|250px|thumb|right|Рис. 12.7]]
''Рис. 12.7 Реабсорбция гидрокарбоната натрия в проксимальных канальцах и места действия ингибитора карбоангидразы ацетазоламида. Контртранспорт Na+ и Н+ через апикальную мембрану транспортирует Na+ в клетку, а Н+ — в просвет канальца. Последний реагирует с бикарбонатом (НС03-), образуя угольную кислоту (Н2С03), которая разлагается, образовывая С02 и Н20. Эту реакцию катализирует карбоангидраза апикальной мембраны. Как С02, так и Н20 легко проходят в клетку, где благодаря действию цитоплазматической карбоангидразы образуется угольная кислота. Угольная кислота разлагается на ион НС03~, который транспортируется с Na+ через базолатеральную мембрану, и Н+. Последний движется через мембрану контртранспортом Na+/H+, начиная цикл снова. Ингибирование мембранных и цитоплазматических форм карбоангидразы ацетазоламидом подавляет реабсорбцию Na+ и НСО3-. АДФ — аденозиндифосфат; АТФ — аденозин-трифосфат.''
[[Image:Ph_12_8.jpg|250px|thumb|right|Рис. 12.8]]
''Рис. 12.8 Транспортные механизмы в толстой части восходящей петли Генле. Петлевые диуретики блокируют котранспорт Na+/K+/2Ch (1), таким образом предотвращая абсорбцию и повышая канальцевое выведение Na+ и Ch. Эти средства также уменьшают разницу потенциалов на канальцевых клетках путем выведения К+ (2). В результате повышается выведение Са2+ и Мд2+ из-за подавления параклеточной диффузии (3). Знаки + и - указывают на разность потенциалов. АДФ — аденозиндифосфат; АТФ — аденозинтрифосфат.''
'''Клинические показания для петлевых диуретиков''':
*острый отек легких. Для гарантированного быстрого эффекта препарат вводят внутривенно.
*другие отечные состояния — нефротический синдром, асцит при циррозе печени и хронической почечной недостаточности (прием перорально);
*гипертензия у пациентов, которые резистентны к другим мочегонным или противогипертоническим препаратам, особенно у пациентов с почечной недостаточностью (см. главу 13);
Рис. 12.7 Реабсорбция гидрокарбоната натрия в проксимальных канальцах и места действия ингибитора карбоангидразы ацетазоламида. Контртранспорт Na+ и Н+ через апикальную мембрану транспортирует Na+ в клетку, а Н+ — в просвет канальца. Последний реагирует с бикарбонатом (НС03-), образуя угольную кислоту (Н2С03), которая разлагается, образовывая С02 и Н20. Эту реакцию катализирует карбоангидраза апикальной мембраны. Как С02, так и Н20 легко проходят в клетку, где благодаря действию цитоплазматической карбоангидразы образуется угольная кислота. Угольная кислота разлагается на ион НС03~, который транспортируется с Na+ через базолатеральную мембрану, и Н+. Последний движется через мембрану контртранспортом Na+/H+, начиная цикл снова. Ингибирование мембранных и цитоплазматических форм карбоангидразы ацетазоламидом подавляет реабсорбцию Na+ и НСО3-. АДФ — аденозиндифосфат; АТФ — аденозин-трифосфат. Рис. 12.8 Транспортные механизмы в толстой части восходящей петли Генле. Петлевые диуретики блокируют котранспорт Na+/K+/2Ch (1), таким образом предотвращая абсорбцию и повышая канальцевое выведение Na+ и Ch. Эти средства также уменьшают разницу потенциалов на канальцевых клетках путем выведения К+ (2). В результате повышается выведение Са2+ и Мд2+ из-за подавления параклеточной диффузии (3). Знаки + и - указывают на разность потенциалов. АДФ — аденозиндифосфат; АТФ — аде-нозинтрифосфат. * острая почечная недостаточность. Применяют для увеличения образования мочи (см. далее);
* гипонатриемия, которая может вызвать отек мозга, что приведет к неврологической дисфункции, выражающейся в летаргии, спутанности сознания и даже коме.
=== Тиазидные и тиазидоподобные диуретики ===
К диуретикам подгруппы [[Тиазидные диуретики|тиазидов ]] относят бендрофлуметиазид, хлоротиазид, политиазид и гидрохлоротиазид. [[Тиазидоподобные диуретики|Тиазидоподобные мочегонные средства ]] (индапамид, хлорталидон и метолазон) имеют сходный механизм действия, но другую химическую структуру. Все тиазидные и тиазидоподобные мочегонные средства имеют сходство с сульфонамидами (см. рис. 12.5).
Молекулярный механизм действия тиазидных диуретиков — ингибирование котранспорта Na+/Cl" (тиазидочувствительный котранспорт) в дистальных извитых канальцах почек (рис. 12.9). По сравнению с петлевыми диуретиками тиазиды имеют умеренную эффективность. Одна из причин — физиологическая: к тому моменту, когда фильтрат достигает дистальных извитых канальцев, 90% отфильтрованного Na+ реабсорбируются. Действие тиазидов приводит к выделению с мочой 50% Na+, идущего к удаленным нефронам, т.е. 5% Na+ фильтруются в мочу. В отличие от петлевых диуретиков, применяемых для лечения потенциально фатальной гипонатриемии, тиазиды могут усугубить ее, т.к. они увеличивают выделение Na+, не изменяя способность почек концентрировать мочу.
=== Различия между тиазидными и тиазидоподобными диуретиками ===
При приеме внутрь тиазидные и тиазидоподобные диуретики всасываются хорошо и выводятся почками путем выделения в проксимальные канальцы (см. табл. 12.3). Однако значительная часть бендрофлуметиазида, политиазида и индапамида выделяется также путем метаболизма. Хлорталидон имеет настолько длительное действие, что его можно применять через день для контроля отеков. Индапамид отличается от других лекарств этой подгруппы тем, что снижает артериальное давление (см. главу 13) в дозах менее высоких, чем необходимо для диуреза (эффект, приписываемый блокаде кальциевых каналов L-типа). Кроме того, индапамид меньше влияет на закисление мочи и на усвоение глюкозы, чем другие препараты из этой подгруппы (см. табл. 12.1).
В отличие от петлевых диуретиков тиазиды уменьшают выделение Са2+. Точный механизм, лежащий в основе этого эффекта, неясен. В дистальных канальцах Са2+ повторно поглощается через эпителиальный кальциевый канал (ЕСаС), отличающийся по структуре и функции от других типов кальциевых каналов. Транспорт Са2+ через базальную мембрану осуществляется с помощью обменного контртранспорта Na+/Ca2+ (см. рис. 12.9). Поскольку внутриклеточная концентрация Na+ уменьшена вследствие первичного молекулярного действия тиазида, увеличение градиента концентрации Na+ на базолатеральной мембране может стать достаточным для увеличения выведения Са2+ через базальную мембрану посредством контртранспорта Na+/Ca2+. При этом наблюдается параллель с клеточным механизмом, посредством которого дигиталис действует на внутриклеточный уровень Са2+ в сердце при лечении сердечной недостаточности (см. главу 13), косвенно влияющий на контртранспорт Na+/Ca2+.
Таблица 12.1 Побочные эффекты диуретиков
Таблица 12.2 Клинически значимые взаимодействия между диуретиками и другими лекарствами
[[Image:Ph_12_9.jpg|250px|thumb|right|Рис. 12.9]]''Рис. 12.9 Транспортные механизмы в начальном отделе дистального канальца. Тиазидные диуретики повышают выделение Na+ и С1~ путем ингибирования котранспорта Na+/CI~ (1). Эти диуретики увеличивают реабсорбцию Са2+ (2) с помощью механизма, который может стимулировать контртранспорт Na+/Ca2+ (3) путем повышения градиента концентрации Na+ на базолатеральной мембране. Знаки + и - указывают на разность потенциалов. АДФ — аденозиндифосфат; АТФ — аденозинтрифосфат.''
Фармакотерапевтическими показаниями для применения тиазидных диуретиков могут быть:
* отеки, возникающие при сердечной недостаточности, циррозе печени и нефротическом синдроме;
* гипертензия (см. главу 13), при которой их используют как монотерапию или в комбинации с другими гипотензивными средствами. Клинические исследования показали, что максимальный эффект дает применение тиазидов в дозе, не превышающей 25 мг/сут гидрохлоротиазида или его эквивалента. Более высокие дозы ведут к большему диурезу без пропорционального снижения артериального давления, но при большем риске гипокалиемии, что предрасполагает к сердечным аритмиям типа фибрилляции желудочков и пароксизмальной желудочковой тахикардии (см. главу 13);
* почечнокаменная болезнь (нефролитиаз) (см. далее).
'''Общие побочные эффекты тиазидов и петлевых диуретиков'''
* блокаторы каналов ENaC (триамтерен и амилорид — органические вещества, не содержащие сульфонамидной группы) (см. рис. 12.5);
* антагонисты альдостерона [[альдостерон]]а (спиронолактон и его метаболит канреноат калия), блокирующие минералокортикостероидные рецепторы, которые являются ДНК-связанными рецепторами (см. главу 3). Спиронолактон имеет циклическую структуру, характерную для стероидов (см. рис. 12.5). Оба типа калийсберегающих диуретиков обладают слабым мочегонным действием, выводя 2-3% Na+, при этом степень диуреза, вызываемого антагонистами альдостерона, во многом зависит от его исходного уровня.
Блокада апикальных Nа+-каналов в базальных клетках амилоридом или триамтереном уменьшает транспорт Na+ через апикальную мембрану (см. рис. 12.10). Амилорид также ингибирует обмен Na+ и Н+, но в концентрациях намного выше тех, что нужны в терапевтических целях. Снижение амилоридом и триамтереном внутриклеточной концентрации Na+ уменьшает активность базолатеральной Nа+/К+ -АТФазы так, что в клетки транспортируется меньше ионов Na+ и К+. Сокращение транспорта Na+ через апикальную мембрану уменьшает мембран-отрицательную разность потенциалов и, следовательно, уменьшает градиент выведения К+. Таким образом, эффект этих лекарственных средств приводит к снижению реабсорбции Na+ и секреции К+. В связи с этим данные препараты называют калийсберегающими диуретиками, их применение может привести к развитию гиперкалиемии.
[[Image:Ph_12_10.jpg|250px|thumb|right|Рис. 12.10]]''Рис. 12.10 Транспортные механизмы в конечном отделе дистального канальца и собирательных трубочках и места действия калийсберегающих диуретиков. Амилорид и триамтерен блокируют апикальные Ма+-каналы, приводя к снижению разности потенциалов на базальной клетке (отрицательный заряд на мембране по отношению к интерстициуму). Снижение разности потенциалов приводит к уменьшению движущей силы для выведения К+ из базальной клетки и выведения Н+ из вставочной клетки. Конечный эффект — увеличенное выведение Na+ и уменьшенное выведение К+ и Н+. Альдостерон связывается с цитоплазматическим минералокортикоидным рецептором (MR), приводя к стимуляции синтеза альдостерон-индуцированных белков (AIP), которые: (1) активируют «спящие» (нефункционирующие) Ма+-каналы; (2) увеличивают синтез К+-каналов; (В) увеличивают синтез Na+/K+-АТФазы; (4) увеличивают митохондриальную выработку АТФ;(5) увеличивают синтез контртранспорта Na+/H+; (б) увеличивают синтез Н+-АТФазы. Общий эффект этих изменений — уменьшение выведения Na+ и увеличение выведения К+ и Н+. Спиронолактон, антагонист альдостерона, оказывает обратное действие. Карбоангидраза (СА) также катализирует образование угольной кислоты в базальных клетках, образуя Н+ для контртранспорта Na+/H+. АДФ — аденозиндифосфат; АТФ — аденозинтрифосфат; мРНК — матричная рибонуклеиновая кислота.''[[Image:Ph_12_11.jpg|250px|thumb|right|Рис. 12.11]]''Рис. 12.11 Механизм регуляции проницаемости для воды собирательных трубочек. Вазопрессин или его аналог (например, десмопрессин) связываются с С-белок-связанными \/2-рецепторами на базолатеральной мембране базальных клеток в собирательных трубочках. Активация аденилилциклазы или протеинкиназы А приводит к перемещению везикул с предсформиро-ванными водными канальцами аквапорина-2 — (AQP-2) в апикальную мембрану. AQP-2 высвобождаются из везикул и встраиваются в мембрану, увеличивая таким образом ее водопроницаемость. Водные канальцы аквапорина-3 и -4 (AQP-3, AQP-4) в базолатеральной мембране обеспечивают проход воды в интерстициум. АТФ — аденозинтрифосфат; цАМФ — циклический аденозинмонофосфат.''
'''Амилорид и триамтерен могут вызвать метаболический ацидоз'''
И амилорид, и триамтерен эффективны при приеме перорально, хотя амилорид выводится с мочой преимущественно в неизмененном виде, а триамтерен трансформируется печенью до активного метаболита 4-гидрокситриамтерена. Спиронолактон при приеме внутрь хорошо абсорбируется и метаболизируется в печени (см. табл. 12.3). Спиронолактон имеет короткий период полувыведения (1,3 час), но трансформируется в длительно действующий активный метаболит канренон (период полувыведения — 17 час), который продлевает мочегонный эффект.
'''КЛИНИЧЕСКИЕ ПОКАЗАНИЯ'''. Триамтерен, амилорид и спиронолактон используют в комбинации с некалийсберегающими диуретиками (тиазидными и петлевыми) для сохранения баланса К+. Включение калийсберегающих диуретиков в терапию мочегонными средствами — альтернатива использованию добавок К+ к некалийсберегающим диуретикам. Амилорид и триамтерен используют в комбинации с тиазидными и петлевыми диуретиками для лечения отеков, связанных с сердечной недостаточностью и заболеваниями печени. Пример такой диуретической комбинации — 50 мг триамтерена и 40 мг фуросемида в одной таблетке, прием от 0,5 до 2 таблеток 1 раз в сутки. Эти препараты также используют в комбинации с тиазидами при лечении гипертензии (см. главу 13), но только при развитии гипокалиемии.
=== Эплеренон ===
'''Эплеренон ''' — селективный антагонист альдостерона (эффект при лечении гипертензии у пациентов с сердечной недостаточностью описан в главе 13). Преимущество препарата перед спиронолактоном заключается в том, что эплеренон более селективен по отношению к рецепторам альдостерона, чем спиронолактон, и поэтому имеет меньше побочных эффектов, связанных с действием на рецепторы половых гормонов (например, гинекомастия).
=== Антагонисты альдостерона ===
=== Осмотические диуретики ===
[[Осмотические диуретики ]] маннитол (для внутривенного введения) и изосорбид (для перорального введения) свободно фильтруются в клубочках и не реабсорбируются. Это редкий пример лекарственнных веществ, эффект которых обусловлен не специфической молекулярной целью, а физико-химическими свойствами. Осмотические диуретики повышают осмотическое давление в почечных канальцах, таким образом уменьшая реабсорбцию воды и Na+ в проксимальных канальцах и тонкой части нисходящей петли Генле. Осмотические диуретики увеличивают внеклеточный объем жидкости, в результате потеря внутриклеточной воды становится больше, что тормозит выброс ренина и уменьшает вязкость крови, а это в свою очередь увеличивает почечный кровоток. Кроме того, почечная вазодилатация и последующее увеличение почечного кровотока, вызванные осмотическими диуретиками, могут привести к выбросу простагландинов. Увеличение почечного кровотока усугубляет мочегонное действие, уменьшая почечную гипертензию. При парентеральном введении маннитол ограничивается внеклеточными пространствами, не депонируется и быстро выводится почками. Приблизительно 80% первоначально введенной дозы выводятся с мочой в течение 3 час. Маннитол свободно фильтруется в клубочках и реабсорбируется в канальцах менее чем на 10%.
'''КЛИНИЧЕСКИЕ ПОКАЗАНИЯ'''. Осмотические диуретики используют нечасто из-за большей терапевтической эффективности других мочегонных средств. Иногда осмотические диуретики применяют при терапии олигурии (см. далее), но не для лечения отеков. У пациентов с сердечной недостаточностью эти препараты могут вызвать отек легких в результате быстрого перераспределения воды из внутриклеточного пространства во внеклеточное и увеличения объема циркулирующей крови. Из-за повышения осмотического давления плазмы осмотические диуретики вызывают отток воды из тканей глаз и головного мозга. Этот эффект используют при лечении острых приступов глаукомы и для снижения повышенного внутричерепного давления при отеке мозга. Такое применение не связано с действием осмотических диуретиков на почки, т.к. полезный эффект прекращается после фильтрации в почках.
Полиурия — чрезмерное выделение мочи, которое обычно сопровождается полидипсией (патологически повышенной жаждой). Главные причины полиурии:
* [[Сахарный диабет - действие инсулина|сахарный диабет (см. главу 11)]];
* несахарный диабет, вызываемый либо нарушением выработки достаточного количества вазопрессина (центральный несахарный диабет), либо тем, что собирающие канальцы не в состоянии ответить на действие вазопрессина (нефрогенный несахарный диабет).
=== Терапевтическая направленность на рецепторы вазопрессина при полиурии ===
Антидиуретический гормон (ADH), также известный как 8-аргинин-вазопрессин, является нонапептидом, вырабатываемым в заднем отделе гипофиза в ответ на увеличение осмоляльности плазмы или снижение объема крови и/или артериального давления (см. главу 11). Есть два подтипа рецепторов ADH — V1 и V2, оба они связаны с G-белком. Возбуждение V1рецепторов вызывает сокращение гладких мышц, особенно сосудов. Через V2-рецепторы вазопрессин влияет на проницаемость для воды собирательных трубочек нефрона. Сходство V2-рецепторов с ADH больше, чем с V1рецепторами, поэтому изменения артериального давления наблюдаются при более высоких дозах, чем нужно для действия на почки.
Другие агонисты ADH, используемые для лечения несахарного диабета:
'''Аллопуринол предотвращает мочекислое камнеобразование'''
Почечнокаменная болезнь также может возникать из-за оседания кристаллов мочевой кислоты (уратов). Лечение аллопуринолом, ингибитором ксантиноксидазы, является предпочтительным, т.к. снижает уровень кислотности мочи и препятствует формированию у ратных уратных камней (см. главу 15). Камни щавелевой кислоты образуются из-за избытка оксалатов или недостатка пиридоксина (витамина В6) в пище, а также в результате интоксикации антифризами или развития воспалительных желудочно-кишечных заболеваний.
'''D-пеницилламин предотвращает образование цистиновых камней'''
== Гиперурикемия ==
Гиперурикемия — причина развития подагры, заболевания с отложением в тканях кристаллов урата натрия (см. главу 15). Подагру лечат препаратами, которые облегчают выведение с мочой мочевой кислоты (урикозурические средства) благодаря клубочковой фильтрации с выделением в проксимальные канальцы. Однако большая часть мочевой кислоты в жидкости канальцев реабсорбируется контртранспортными системами как в апикальных, так и в базолатеральных мембранах клеток канальцев. Они обменивают ураты на органические или неорганические анионы. Урикозурические препараты ингибируют транспорт уратов через апикальную мембрану. Основные урикозурические препараты пробенецид и сульфинпиразон применяют у пациентов с низким клиренсом мочевой кислоты. Для предотвращения кристаллизации уратов на раннем этапе терапии необходимо высокое потребление жидкости (2 л/сут), а также бикарбоната натрия или калиевой соли лимонной кислоты, чтобы моча имела щелочную реакцию (pH > 6,0). Интересно, что лосартан может увеличить клиренс мочевой кислоты независимо от своей способности блокировать рецепторы ангиотензина II.
'''ПОБОЧНОЕ ДЕЙСТВИЕ'''. Урикозурические препараты стараются не применять у пациентов с избытком выработки мочевой кислоты, т.к. можно спровоцировать приступ подагры. Эти препараты нельзя применять при острых приступах подагры.
Острая сердечная недостаточность неблагоприятно влияет на многие органы и системы тела. Для лечения этих нарушений применяют различные средства, например:
* гипотензивные средства (см. главу 13);
* антиконвульсанты при судорогах (см. главу 8);
* антагонисты Н2 для предотвращения язвы желудка (см. главу 16);
* антибактериальные препараты, т.к. во многих случаях развиваются инфекции, которые являются главной причиной летального исхода.
* ацетазоламид — для коррекции метаболического алкалоза, ассоциируемого с рвотой при почечной недостаточности;
* гипотензивные средства (см. главу 13) — для контроля гипертензии, связанной с хронической почечной недостаточностью. Они уменьшают степень снижения почечной функции. Особенно эффективны ингибиторы ангиотензинпревращающего фермента. Большинство пациентов с хронической почечной недостаточностью страдает гипертензией, что может повредить почкам, привести к протеинурии и гиперфильтрации с последующим повреждением клубочков;
* противорвотные средства (см. главу 8) — для устранения тошноты и рвоты, испытываемых многими пациентами на поздней стадии почечной недостаточности;
* рекомбинантный человеческий эритропоэтин — для лечения анемий, развивающихся после потери главного источника эритропоэтина из пери-тубулярных клеток в корковом веществе почек. Эритропоэтин стимулирует производство предшественников красных клеток крови в костном мозге (см. главу 10);
* гидроксированные формы [[Витамин D|витамина D ]] (1а-гидроксихолекальциферол и 1,25-дигидроксихолекальциферол) — для поддержания Са2+ в плазме и предотвращения гиперпаратиреоидизма. При хронической почечной недостаточности происходит сбой в механизме активации витамина D (см. главу 11) из-за нарушения гидроксилирования 25-гидроксихолекальциферола до 1,25-дигидроксихолекальциферола в почках. В результате абсорбция поступающего с пищей Са2+ уменьшается, и уровень Са2+ в плазме снижается. При этом развивается вторичный гиперпаратиреоидизм (см. главу 11), который может привести к выведению кальция из костей.
Препараты при почечной недостаточности нужно назначать с большой осторожностью вследствие:
== Гломерулонефрит ==
Термин «гломерулонефрит» объединяет целый ряд почечных заболеваний, характеризующихся воспалительными изменениями в клубочках. Как правило, пациенты с гломерулонефритом имеют гематурию, протеинурию и уменьшенную почечную функцию, связанную с задержкой жидкости, гипертензией и отеками. Гломерулонефрит встречается как первичная болезнь почек или возникает из-за системного заболевания, например системной красной волчанки (см. главу 15). Причины первичного гломерулонефрита не всегда ясны, но могут быть связаны с бактериальными или вирусными инфекциями.
'''Лекарственная терапия гломерулонефрита'''
Выведение лекарств диализом зависит от техники диализа, фракций препарата, находящихся в крови, и размера молекул Анализируемого вещества. Гемодиализ выводит препараты более эффективно, чем перитонеальный диализ. Соответственно, при лекарственной передозировке или отравлениях выбирают гемодиализ. Только свободный, несвязанный препарат формирует градиент концентрации, определяющий диффузию веществ из крови в жидкость для диализа. При высокой степени [[Связывание лекарств с белками плазмы|связывания лекарственных веществ белками плазмы]] очищение диализом ограничено. Большинство молекул лекарственных веществ имеют достаточно малый размер для диффузии через искусственные или эндогенные тканевые мембраны.
Таблица 12.4 '''Группы лекарственных средств, которые при почечной недостаточности противопоказаны или нужно применять с осторожностью'''
<table border="1">
== Нефротоксичные препараты ==
[[Image:Ph_12_12.jpg|250px|thumb|right|Рис. 12.12 Первичное место нефротоксического действия некоторых препаратов.]]
Центральная роль почек в выведении лекарств и метаболитов делает их восприимчивыми к неблагоприятным эффектам препаратов. Почечная ткань подвергается воздействию препаратов как через кровь, так и через почечные канальцы. Концентрации веществ в канальцах могут быть намного выше, чем в крови и, следовательно, более токсичными. Различные нефротоксичные вещества оказывают действие на различные части нефронов. Это следует из особенностей транспорта, клеточной энергетики, механизмов биоактивации или детоксикации. Причины селективной почечной токсичности некоторых лекарств еще только предстоит изучить. Участки действия некоторых нефротоксичных лекарств показаны на рис. 12.12.
=== Некоторые антибактериальные препараты могут быть нефротоксичными ===
Нефротоксичны [[аминогликозиды]], амфотерицин В и некоторые цефалоспорины первого поколения. Порядок этих лекарств по токсичности таков: гентамицин, тобрамицин, амикацин и нетилмицин.
Аминогликозиды важны при лечении тяжелых грамотрицательных инфекций, но у 10-15% пациентов развивается острая почечная недостаточность. Первичный участок поражения — проксимальные канальцы.
Системное антимикотическое лекарственное средство амфотерицин В нефротоксичен у 80% пациентов. Этот препарат вызывает сужение сосудов почек, и, хотя повреждаются несколько областей нефронов, первичный участок токсичности — дистальные канальцы.
Некоторые [[цефалоспорины ]] первого поколения (цефалоридин и цефалотин) потенциально нефротоксичны, но не настолько, как аминогликозиды и амфотерицин В.
=== Противоопухолевые препараты ===
'''Противоопухолевые алкилирующие агенты и соединения платины могут вызывать повреждения почек'''
Нефротоксичность [[Алкилирующие средства|алкилирующих ]] агентов типична. Циклофосфамид и ифосфамид вызывают образование акролеина — нефротоксичного вещества, которое приводит к развитию геморрагического цистита. Это можно предотвратить единовременным приемом 2-меркаптоэтан-сульфоната, который реагирует с акролеином, переводя его в мочевых путях в нетоксичное соединение.
Цисплатин и в меньшей степени карбоплатин также нефротоксичны. Наносимый цисплатином вред главным образом затрагивает прямую часть проксимальных канальцев. Чтобы минимизировать вред, обычно пациента перед введением препарата гидратируют вливанием 1-2 л физиологического раствора.
Разрушение клеток противоопухолевыми лекарствами высвобождает большое количество пуринов. Катаболизм пуринов приводит к чрезмерному образованию и выделению уратов и увеличенному риску формирования камней в почках и гиперуре-мической гиперуремической подагры. Рис. 12.12 Первичное место нефротоксического действия некоторых препаратов.
=== Иммунодепрессанты ===
Многие лекарства могут привести к острому ухудшению почечной функции, вызывая воспаление почечных интерстициальных тканей, возможно, из-за их гиперчувствительности. Список таких препаратов включает:
* [[пенициллины]];
* сульфонамиды (включая ко-тримоксазол);
У пациентов часто встречается сопутствующая лихорадка, кожная сыпь и гематурия.
 
== Читайте также ==
 
[[Тиазидные диуретики]]<br />[[Тиазидоподобные диуретики]]<br />[[Ингибиторы карбоангидразы]]<br />[[Петлевые диуретики]]<br />[[Осмотические диуретики]]<br />[[Растительные диуретики]]<br />[[Диуретики в спорте]]
== Литература ==

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция