Открыть главное меню

SportWiki энциклопедия β

Изменения

Метаболизм и эндокринная система

483 байта добавлено, 9 лет назад
Нет описания правки
== Общая физиология эндокринной и метаболической систем ==
[[Эндокриная система, спорт и двигательная активность|Эндокринная система ]] состоит из желез внутренней секреции, выделяющих в кровь гормоны, которые регулируют функции тканей-мишеней. Эти железы включают гипоталамус, гипофиз, [[Щитовидная железа|щитовидную ]] и околощитовидные железы, панкреатические островки Лангерганса, надпочечники и половые железы (гонады). Эндокринная система регулирует семь основных физиологических функций (табл. 11.1). Главная цель лекарственной терапии эндокринных заболеваний — гармонизация взаимодействия между лекарствами, вводимыми экзогенно, и эндогенными гормонами.
Эндокринное регулирование гомеостаза Са2+ обсуждается в главе 15, а расстройства циркуляторного объема — в главе 13. Дополнительная информация о нарушениях мочеполовой системы приведена в главе 17. == Гипоталамо-гипофизарная система == '''Гипоталамус и гипофиз интегрируют физиологические сигналы и высвобождают гормоны, регулирующие деятельность других желез''' Гипофиз в основном регулирует всю эндокринную систему (за исключением энергетического и электролитного обмена): работу щитовидной железы, глюкортикостероидов, половых стероидов и секрецию фактора роста путем синтезирования и выделения особых гормонов. Гипофиз состоит из передней доли и задней доли, в которых вырабатываются два гормона (пролактин и вазопрессин), действующие непосредственно на ткани-мишени (рис. 11.1). [[Передняя доля гипофиза]] (аденогипофиз) образована из дивертикула Ратке в зародышевой части глотки, а задняя доля (нейрогипофиз) — это внечерепные нейрональные ткани из промежуточного мозга. Кровоснабжение передней доли гипофиза идет по капиллярному ложу гипоталамуса, затем по проводящим венам к капиллярному ложу гипофиза. Такая система воротной вены обеспечивает доставку гипоталамических гормонов, регулирующих функцию передней доли гипофиза. В результате низкого перфузионного давления в системе воротной вены передняя доля гипофиза уязвима в отношении ишемии, особенно во время послеродового кровотечения (синдром Шихана). Передняя доля гипофиза состоит из различных типов клеток, вырабатывающих разные пептидные гормоны. Табяица Таблица 11.1 '''Функциональная анатомия эндокринной и метаболической систем'''
<table border="1">
<p>Все ткани</p></td></tr>
<tr><td>
<p>Объем</p><p>циркулирующей</p><p>крови</p></td><td>
<p>Ренин, ангиотензин II, гипоталамический осморецептор</p></td><td>
<p>[[Надпочечники]]/[[альдостерон]]</p>
<p>Гипофиз/вазопрессин</p></td><td>
<p>[[Почки]], кровяные сосуды, центральная нервная система</p></td></tr>
<tr><td>
<p>Рост</p></td><td>
<p>Гипоталамический гормон роста рилизинг гормона (GHRH), [[соматостатин]], сон, физические упражнения, стресс, [[гипогликемия]]</p></td><td><p>Гипофиз/[[гормон роста ]] Печень/[[Инсулиноподобные факторы роста и их рецепторы|инсулиноподобные факторы роста (ICF)]]</p></td><td>
<p>Все ткани</p></td></tr>
<tr><td>
<p>[[Кальциевый обмен|Обмен кальция]]</p></td><td>
<p>Концентрация в сыворотке Са<sup>2+</sup> и Мg<sup>2+</sup></p></td><td>
<p>Паращитовидные железы/ паратиреоидные гормоны, [[кальцитонин]], витамин D</p></td><td>
<p>Почки, кишечник, кости</p></td></tr>
<tr><td>
<p>Репродуктивная</p>
<p>функция</p></td><td>
<p>Гипоталамический гонадотропин-рилизинг гормон (GnRH), гипофизарный фолликулостимулирующий гормон (FSH) и [[лютеинизирующий гормон ]] (LH), ингибины</p></td><td><p>[[Гонадотропные гормоны|Гонады]]/[[Половые гормоны|половые стероиды ]] Надпочечники/андрогены[[андроген]]ы</p></td><td>
<p>Репродуктивные органы, центральная нервная система, различные ткани</p></td></tr>
<tr><td>
<p>[[Адаптация к стрессорным ситуациям и физическим нагрузкам Меерсон Ф З|Адаптация к стрессу]]</p></td><td><p>Гипоталамический [[кортикотропин]]-рилизинг гормон (CRH), гипофизарный [[адренокортикотропный гормон ]] (АСТН), гипогликемия, стресс</p></td><td>
<p>Надпочечники/</p>
<p>глюкокортикостероидыглюко[[кортикостероиды]],</p>
<p>эпинефрин</p></td><td>
<p>ЦНС, печень, [[скелетные мышцы]], жировые ткани, лимфоциты, фибробласты, сердечнососудистая [[сердечно-сосудистая система]]</p></td></tr>
<tr><td colspan="4">
<p>Эндокринная и метаболическая системы регулируют семь основных функций организма. Для оказания эффекта на ткани-мишени эндокринные железы высвобождают гормоны в ответ на различные регулирующие факторы, в том числе физиологические (например, сон и стресс), биохимические (например, глюкоза и Са<sup>2+</sup>) и гормональные стимулы (например, гипоталамические гормоны).</p>
</table>
Регулирование секреции гормонов щитовидной железы — типичный пример контрольной петли гипоталамо-гипофизарной системы (рис. 11.2). Если гипоталамические рецепторы, чувствительные к гормону щитовидной железы, обнаруживают Эндокринное регулирование гомеостаза Са2+ обсуждается в крови низкую концентрацию циркулирующего гормона щитовидной железыглаве 15, это приводит к высвобождению тиреотропин-рилизинг гормона (TRH) из гипоталамуса (третичный уровень регуляции) а расстройства циркуляторного объема — в систему воротной вены, снабжающей переднюю долю гипофизаглаве 13. Стимулирование рецепторов TRH на === -клетках гипофиза ведет к высвобождению тиреотропного гормона (TSH) Дополнительная информация о нарушениях мочеполовой системы приведена в венозную систему (вторичный уровень регуляции). TSH стимулирует высвобождение тиреоидных гормонов из щитовидной железы (первичный уровень продукции гормона). Гормон щитовидной железы действует непосредственно на ткани-мишени и имеет эффекты отрицательной обратной связи в отношении гипоталамуса и гипофиза. Системы, регулирующие выработку половых гормонов и глюкокортикостероидов, построены по четырех ступенчатому принципу: гипоталамус — гипофиз — конечная эндокринная железа — ткань-мишень[[Мочеполовая система]].
Рис. 11.1 == Гипоталамо-гипофизарная система==[[Image:Ph_11_1. Клетки передней доли гипофиза регулируются гипоталамическими гормонами, которые экскретируются в вены, идущие от гипоталамуса к передней доле гипофиза через стебель гипофизаjpg|250px|thumb|right|Рис. Гормоны передней доли гипофиза экскретируются в нижние каменистые вены для доставки эндокринным органам во всем теле11. Задняя доля гипофиза состоит из специализированных нейронов, синтезирующих пептидные гормоны, вазопрессин и [[окситоцин1]]'''Гипоталамус и гипофиз интегрируют физиологические сигналы и высвобождают гормоны, для экскреции в кровообращение большого круга. АСТН — [[адренокортикотропный гормон]]; CRH — кортикотропин-рилизинг гормон; DHEA — дегидроэпиандростерон; FSH — фолликулостимулирующий гормон; СН — [[гормон роста]]; CHRH — гормон роста рилизинг гормона; GnRH — гонадотропин-рилизинг гормон; IGF — [[инсулиноподобный фактор роста]]; LH — лютеинизирующий гормон; PRL — [[пролактин]]; Т3 — трийодтиронин; Т4 — [[Тироксин|тетрайодтиронин]]; TRH тиреотропин-рилизинг гормон; TSH — тиреотропный гормон.регулирующие деятельность других желез'''
''Рис. 11.1 Гипоталамо-гипофизарная система. Клетки передней доли гипофиза регулируются гипоталамическими гормонами, которые экскретируются в вены, идущие от гипоталамуса к передней доле гипофиза через стебель гипофиза. Гормоны передней доли гипофиза экскретируются в нижние каменистые вены для доставки эндокринным органам во всем теле. Задняя доля гипофиза состоит из специализированных нейронов, синтезирующих пептидные гормоны, вазопрессин и [[окситоцин]], для экскреции в кровообращение большого круга. АСТН — [[адренокортикотропный гормон]]; CRH — кортикотропин-рилизинг гормон; DHEA — дегидроэпиандростерон; FSH — фолликулостимулирующий гормон; СН — [[гормон роста]]; CHRH — гормон роста рилизинг гормона; GnRH — гонадотропин-рилизинг гормон; IGF — [[инсулиноподобный фактор роста]]; LH — лютеинизирующий гормон; PRL — [[пролактин]]; Т3 — трийодтиронин; Т4 — [[Тироксин|тетрайодтиронин]]; TRH тиреотропин-рилизинг гормон; TSH — тиреотропный гормон.'' Гипофиз в основном регулирует всю эндокринную систему (за исключением энергетического и электролитного обмена): работу щитовидной железы, глюкортикостероидов, половых стероидов и секрецию фактора роста путем синтезирования и выделения особых гормонов. Гипофиз состоит из передней доли и задней доли, в которых вырабатываются два гормона ([[пролактин]] и вазопрессин), действующие непосредственно на ткани-мишени (рис. 11.1). [[Передняя доля гипофиза]] (аденогипофиз) образована из дивертикула Ратке в зародышевой части глотки, а задняя доля (нейрогипофиз) — это внечерепные нейрональные ткани из промежуточного мозга. Кровоснабжение передней доли гипофиза идет по капиллярному ложу гипоталамуса, затем по проводящим венам к капиллярному ложу гипофиза. Такая система воротной вены обеспечивает доставку гипоталамических гормонов, регулирующих функцию передней доли гипофиза. В результате низкого перфузионного давления в системе воротной вены передняя доля гипофиза уязвима в отношении ишемии, особенно во время послеродового кровотечения (синдром Шихана). Передняя доля гипофиза состоит из различных типов клеток, вырабатывающих разные пептидные гормоны.[[Image:Ph_11_2.jpg|250px|thumb|right|Рис. 11.2]]''Рис. 11.2 Гипоталамо-гипофизарно-щитовидная система, (а) Регулирование обмена гормонов щитовидной железы иллюстрирует основные черты регуляции эндокринной системы гипоталамусом и гипофизом. Гипоталамический тиреотропин-рилизинг гормон (TRH), поступающий в кровообращение, стимулирует выработку гипофизом тиреотропного гормона (TSH). Циркулирующий TSH стимулирует высвобождение тироксина (тетрайодтиронин, Т4) и трийодтиронина (Т3) щитовидной железой из запасов в тиреоидных (щитовидных) фолликулах, (б) Лиганд-связанный рецептор щитовидной железы может димеризироваться или связываться с рецептором ретиноевой кислоты (RxR) перед транслокацией в ядро. Связанные рецепторы гормона щитовидной железы (TR) взаимодействуют со специальными элементами ответа на тиреоидные гормоны (TRE) чувствительных к этим гормонам генов. Гипоталамус и гипофиз также содержат рецепторы тиреоидных гормонов, которые обеспечивают ингибирование обратной связи циркуляцией тиреоидного гормона в крови. Тиреоид-ный Тиреоидный гормон (гормон щитовидной железы) накапливается в фолликулах щитовидной железы. TSH стимулирует эндоцитоз запасов тирео-глобулина тиреоглобулина и высвобождает гормон щитовидной железы в кровь. Амебоподобные выросты фолликулов щитовидной железы захватывают тиреоглобулин внутрь клеток. TBG —тироксинсвязывающий глобулин.'' Регулирование секреции гормонов [[Щитовидная железа|щитовидной железы]] — типичный пример контрольной петли гипоталамо-гипофизарной системы (рис. 11.2). Если гипоталамические рецепторы, чувствительные к гормону щитовидной железы, обнаруживают в крови низкую концентрацию циркулирующего гормона щитовидной железы, это приводит к высвобождению тиреотропин-рилизинг гормона (TRH) из гипоталамуса (третичный уровень регуляции) в систему воротной вены, снабжающей переднюю долю гипофиза. Стимулирование рецепторов TRH на клетках гипофиза ведет к высвобождению тиреотропного гормона (TSH) в венозную систему (вторичный уровень регуляции). TSH стимулирует высвобождение [[Тиреоидные гормоны|тиреоидных гормонов]] из щитовидной железы (первичный уровень продукции гормона). Гормон щитовидной железы действует непосредственно на ткани-мишени и имеет эффекты отрицательной обратной связи в отношении гипоталамуса и гипофиза. Системы, регулирующие выработку [[Половые гормоны|половых гормонов]] и глюко[[Кортикостероиды|кортикостероидов]], построены по четырех ступенчатому принципу: гипоталамус — гипофиз — конечная эндокринная железа — ткань-мишень.
'''Разные отделы эндокринной системы имеют общие признаки заболеваний'''
Эндокринные факторы, регулирующие интенсивность обмена веществ ([[тиреоидные гормоны]]), репродуктивную функцию (половые стероиды), адаптацию к физиологическому стрессу (глюкокортикостероиды) и рост тела (инсулиноподобный фактор роста), имеют общие признаки патологии, влияющие на уровень эндокринного обмена. Заболевание может порождать подобный эффект на любом уровне в регулирующей системе (т.е. гипо- или гиперстимуляцию органа-мишени), поэтому конкретные подходы к лекарственной терапии выбирают в зависимости от места патологии. Например, недоразвитие половой системы из-за неправильной работы гипофизных гонадотрофов хорошо поддается лечению с помощью поступающих извне гонадотропинов, но при гонадной недостаточности такое лечение будет неэффективным. При диагностике эндокринных заболеваний стараются определить место возникновения патологии путем идентификации гормональных реакций, характерных для разных болезней. Понимание первичных изменений и компенсаторных реакций на регулирующие гормоны, сопровождающих различные типы эндокринных заболеваний, необходимо для правильной диагностики и адекватного лечения.
== ПАТОФИЗИОЛОГИЯ ЗАБОЛЕВАНИЙ ЭНДОКРИННОЙ И МЕТАБОЛИЧЕСКОЙ СИСТЕМ ==
Лекарства, влияющие на эндокринную и метаболическую системы, могут действовать на любом этапе процесса гормональной регуляции, где будут стимулировать или подавлять функции тканей-мишеней. Это обусловливает различные фармакотерапевтические подходы к достижению одинакового фармакологического эффекта путем модификации действия гормона или изменения его синтеза. Фармакологическое воздействие может быть нескольких видов: заместительная гормональная терапия, гормоноподавляющая терапия и использование других препаратов, влияющих на эндокринную систему. При заместительной гормональной терапии иногда используют синтетические аналоги эндогенного гормона.
Лекарственные средства, уменьшающие гормональную стимуляцию тканей-мишеней, могут увеличивать синтез гормонов за счет обратной связи с гипоталамусом и гипофизом. Например, ингибитор синтеза кортизола [[кортизол]]а метирапон уменьшает глюкокортикостероидное угнетение высвобождения [[Адренокортикотропный гормон|адренокортикотропного гормона]]. Применение этого препарата ведет к усилению стимуляции АСТН в надпочечниках, что может перевесить эффект от терапии метирапоном.
== Заболевания гипофиза ==
Причиной гипофункции гипофиза (гипопитуитаризма) могут быть деструктивные новообразования, опухоли, травмы, сосудистые инфаркты, воспалительные заболевания или гранулематозные инфекции гипофиза (табл. 11.2). Кроме того, в гипоталамо-гипофизарной системе синтеза отдельных гормонов может возникнуть специфический дефицит, приводящий к гипопитуитаризму. Главные признаки гипопитуитаризма: (1) гипофункция нескольких эндокринно-зависимых тканей-мишеней; (2) низкая концентрация первичных гормонов, отражающаяся на этих тканях; (3) концентрации гормонов гипофиза ниже уровня, обычно вызывающего компенсаторный эффект при гормональной недостаточности. В некоторых случаях концентрации гипофизных гормонов могут увеличиваться, но не настолько, чтобы полностью скорректировать гормональный дефицит. Терапия гипофункции гипофиза заключается в замещении гормонами щитовидной железы, половыми стероидами, глюкокортикостероидами, вазопрессином, а в некоторых случаях — гормоном роста.
Таблица 11.2 Причины гипопитуитаризма === Гиперфункция гипофиза === '''ИЗБЫТОК ПРОЛАКТИНА (ГИПЕРПРОЛАКТИНЕМИЯ)'''. Избыточная секреция гипофизом пролактина встречается довольно часто и имеет различные причины. Выработка пролактина подавляется дофамином, высвобождаемым гипоталамусом. Дофамин активирует расположенные в лактотрофах передней доли гипофиза D2-рецепторы, вследствие этого уменьшается синтез цАМФ. Избыточный пролактин обычно вырабатывается при наличии секреторной лактотрофной аденомы или других различных гипоталамо-гипофизарных причин, уменьшающих подавление дофамина (табл. 11.3). Избыток пролактина — частая причина бесплодия и галактореи. Если это связано с размером опухоли гипофиза, могут появиться другие симптомы, например головная боль или нарушения зрения из-за сжатия оптического нерва. '''Выработка пролактина (даже из аденом гипофиза) подавляется агонистами D2рецепторов''' Агонисты D2-рецепторов подавляют выработку пролактина (табл. 11.4). Препараты производят из спорыньи, они являются прототипом бромокриптина, который эффективен при снижении концентрации пролактина, но плохо переносится из-за вызываемых им тошноты и слабости. Возникают также редкие, но опасные для жизни осложнения: судороги, нарушения ритма сердца и мозгового кровообращения. Новейший агонист D2-рецепторов длительного действия каберголин имеет меньше побочных эффектов, чем бромокриптин. Кроме снижения пролактина, агонисты D2рецепторов также уменьшают лактотрофную аденому гипофиза, подавляя синтез ДНК и деление клеток. Во многих случаях уменьшение опухоли происходит уже через несколько дней после начала лечения. Нормализация пролактина достигается у 70-80% пациентов, получающих агонисты D2-рецепторов, в то время как хирургическое вмешательство успешно только в 50-60% случаев микроаденомы гипофиза. По этой причине для такого рода опухолей гипофиза в качестве основного метода лечения применяют агонисты D2-рецепторов вместо оперативного вмешательства. Терапевтический эффект также включает устранение вызываемых гипогонадизмом аменореи, бесплодия и потери костной ткани. Таблица 11.3 '''Причины гиперпролактинемиигипопитуитаризма''' *Сдавление стебля гипофиза новообразованиями *Лактотрофная аденома гипофиза *Физиологические раздражители **Кормление грудью *Гормональное состояние **Беременность**Эстрогенная терапия**Гипотиреоз *Лекарственные средства **Антипсихотические(антагонисты дофамина)**Циметидин**Верапамил**Опиаты *Почечная недостаточность и цирроз печени *Травма грудной клетки
<table border="1">
</table>
=== Гиперфункция гипофиза === '''ИЗБЫТОК ПРОЛАКТИНА (ГИПЕРПРОЛАКТИНЕМИЯ)'''. Избыточная секреция гипофизом [[пролактин]]а встречается довольно часто и имеет различные причины. Выработка пролактина подавляется [[дофамин]]ом, высвобождаемым гипоталамусом. Дофамин активирует расположенные в лактотрофах передней доли гипофиза D2-рецепторы, вследствие этого уменьшается синтез цАМФ. Избыточный пролактин обычно вырабатывается при наличии секреторной лактотрофной аденомы или других различных гипоталамо-гипофизарных причин, уменьшающих подавление дофамина (табл. 11.3). Избыток пролактина — частая причина бесплодия и галактореи. Если это связано с размером опухоли гипофиза, могут появиться другие симптомы, например головная боль или нарушения зрения из-за сжатия оптического нерва. Таблица 11.3 '''Причины гиперпролактинемии''' *Сдавление стебля гипофиза новообразованиями *Лактотрофная аденома гипофиза *Физиологические раздражители **Кормление грудью *Гормональное состояние **Беременность**Эстрогенная терапия**Гипотиреоз *Лекарственные средства **Антипсихотические(антагонисты дофамина)**Циметидин**Верапамил**Опиаты *Почечная недостаточность и цирроз печени *Травма грудной клетки '''Выработка пролактина (даже из аденом гипофиза) подавляется агонистами D2рецепторов''' Агонисты D2-рецепторов подавляют выработку пролактина (табл. 11.4). Препараты производят из спорыньи, они являются прототипом бромокриптина, который эффективен при снижении концентрации пролактина, но плохо переносится из-за вызываемых им тошноты и слабости. Возникают также редкие, но опасные для жизни осложнения: судороги, нарушения ритма сердца и мозгового кровообращения. Новейший агонист D2-рецепторов длительного действия каберголин имеет меньше побочных эффектов, чем бромокриптин. Кроме снижения пролактина, агонисты D2рецепторов также уменьшают лактотрофную аденому гипофиза, подавляя синтез ДНК и деление клеток. Во многих случаях уменьшение опухоли происходит уже через несколько дней после начала лечения. Нормализация пролактина достигается у 70-80% пациентов, получающих агонисты D2-рецепторов, в то время как хирургическое вмешательство успешно только в 50-60% случаев микроаденомы гипофиза. По этой причине для такого рода опухолей гипофиза в качестве основного метода лечения применяют агонисты D2-рецепторов вместо оперативного вмешательства. Терапевтический эффект также включает устранение вызываемых гипогонадизмом аменореи, бесплодия и потери костной ткани. Таблица 11.4 '''Дофаминовые агонисты, применяемые при лечении гиперпролактинемии'''
'''Дофаминергические агенты, снижающие уровень пролактина'''
*Тошнота и рвота
 
*Артериальная ортостатическая гипертензия
 
*Насморк
 
*Обострение психоза
 
*Спазм сосудов пальцев
=== Избыток гормона роста (акромегалия) ===
[[Image:Ph_11_3.jpg|250px|thumb|right|Рис. 11.3 Характерные черты лица при акромегалии (предоставлено C.D. Forbes, W.F. Jackson).]]Система [[гормон роста ]] (GH) — [[инсулиноподобный фактор роста ]] — эндокринная система, патологии которой преимущественно касаются гипофиза и гипоталамуса. Гормон роста, 191-аминокислотный пептид, способствует синтезу белка и росту тканей. Многие эффекты гормона роста осуществляются посредством IGF, синтезируемых в печени. IGF — это пептидные гормоны, оказывающие анаболическое действие путем стимуляции рецепторов, связанных с тирозинкиназой. Избыточная выработка гормона роста встречается редко и обычно связана с соматотропной аденомой гипофиза. Избыток GH во взрослом возрасте (акромегалия) обычно не приводит к увеличению роста. Основные признаки избытка GH у взрослых: грубые черты лица (рис. 11.3, табл. 11.5), увеличение кистей рук и ступней ног, внутренних органов, например сердца (кардиомегалия), и толщины мягких тканей. У детей избыток GH может привести к гигантизму.
'''Иногда показано лечение новообразований, вырабатывающих гормон роста, дофаминергическими агонистами или октреотидом
*дофаминергические агонисты D2-рецептора, подавляющие выработку гормона роста в некоторых случаях;
 [[Image:Ph_11_4.jpg|250px|thumb|right|Рис. 11.3 Характерные черты лица при акромегалии (предоставлено C.D. Forbes, W.F. Jackson).4]]Таблица 11.5 '''Симптомы акромегалии'''
*Грубые черты лица
*аналоги соматостатина (например, октреотид или лантреотид).
[[Соматостатин ]] — 14-аминокислотный пептидный гормон, вырабатываемый различными органами, включая центральную нервную систему, пищеварительный тракт, панкреатические 5-клетки. Соматостатин подавляет высвобождение целого ряда гормонов (рис. 11.4). G-белок-связанные рецепторы соматостатина подавляют высвобождение гормона, уменьшая уровень цАМФ. Соматостатин не разрабатывали как лекарственное средство, но его синтетический октапептидный аналог октреотид применяют для лечения акромегалии, карциноидных новообразований и кишечной дисфункции. ''Рис. 11.4 Физиология соматостатина. Соматостатин синтезируется в гипоталамусе, панкреатических 5-клетках (а) и желудочно-кишечном тракте (б). Соматостатин подавляет клеточные процессы, относящиеся к выработке гормона роста (СН), инсулина, глюкагона и кишечных гормонов путем уменьшения накапливания циклического аденозинмонофосфата (цАМФ) и подавления клеточной деполяризации. CHRH — гормон роста рилизинг гормона; IGF-1 — инсулиноподобный фактор роста 1.''
При лечении акромегалии у большинства больных октреотид применяют в стартовой дозе 0,05 мг 3 раза в день. Далее не следует превышать максимальную дозу, составляющую 0,5 мг 3 раза в день. Если после 3 мес лечения не отмечается достаточного снижения гормона роста и улучшения клинической картины заболевания, терапию следует прекратить. После достижения максимального терапевтического эффекта можно переводить пациента на более удобную схему лечения октреотидом-SAR — 20 мг внутримышечно 1 раз в месяц. Лечение октреотидом нормализует выработку гормона роста и концентрацию IGF-1 примерно у 50-80% больных акромегалией. Аналог соматостатина длительного действия эффективен в 60-75% случаях. Терапевтическая реакция на эти лекарства включает уменьшение артралгий, потливости, головных болей, апноэ во сне, улучшение сердечной функции. Побочные эффекты: болезненность в месте инъекции, изменения в функционировании кишечника, увеличение риска желчнокаменной болезни.
Человеческий гормон роста (hGH), получаемый из трупных экстрактов гипофиза, применяли в прошлом, но это в некоторых случаях приводило к возникновению болезни Крейтцфельдта-Якоба. Сейчас для лечения дефицита гормона роста в педиатрии, маленького роста из-за синдрома Тернера и дефицита гормона роста у взрослых применяют рекомбинантный человеческий гормон роста (rhGH) соматотропин и близкий hGH аналог соматрем. Соматрем содержит 191 аминокислоту природного hGH и дополнительный остаток метионина. Гормон роста связывается с рецепторами GH во многих тканях, которые активируют внутриклеточные проводящие пути тирозинкиназы. В печени активация рецептора GH приводит к выработке IGF-1 и IGF-2, которые являются мономерными протеинами, высокогомологичными инсулину. IGF связывает IGF-рецепторы во многих тканях и стимулирует сигнальные проводящие пути тирозинкиназы.
Рис. 11.4 Физиология соматостатина. Соматостатин синтезируется в гипоталамусе, панкреатических 5-клетках (а) и желудочно-кишечном тракте (б). Соматостатин подавляет клеточные процессы, относящиеся к выработке гормона роста (СН), инсулина, глюкагона и кишечных гормонов путем уменьшения накапливания циклического аденозинмонофосфата (цАМФ) и подавления клеточной деполяризации. CHRH — гормон роста рилизинг гормона; IGF-1 — инсулиноподобный фактор роста 1. Таблица 11.6 '''Причины маленького роста'''
*Конституциональный маленький рост
**Наследственное ожирение
Рекомбинантный hGH ускоряет линейный рост скелетных костей, оказывает анаболический эффект на органы и мягкие ткани, активизирует задержку электролитов и усиливает мобилизацию глюкозы и жирных кислот. Эндогенная выработка гормона роста имеет прерывистый, пульсирующий характер, поэтому постоянный уровень экзогенного GH в плазме не является необходимым условием для терапевтического эффекта и введение hGH с определенными перерывами приводит к длительному увеличению концентрации IGF-1 в плазме. Т1/2 из плазмы рекомбинантного гормона роста составляет примерно 4 час после подкожного введения детям в обычной дневной дозе (0,18— 0,3 мг/кг в неделю, разделенная на 6 дневных доз). Т1/2 соматотропина составляет 20 мин, но клиренс в плазме после подкожной инъекции увеличен из-за отложенной абсорбции.
Лечение детей с дефицитом гормона роста приводит к достижению среднего роста во взрослом возрасте в пределах 0,5-0,7 стандартных отклонений от обычного среднего роста. Лечение пациентов с синдромом Тернера приводит к увеличению роста у взрослого на 6-7 см. При лечении детей побочные эффекты hGH встречаются редко, и отсутствуют данные о повышении риска возникновения диабета или рака. Терапию hGH у детей прерывают на время закрытия зоны роста эпифизов костей. Лечение взрослых с дефицитом гормона роста ведет к умеренным улучшениям двигательных способностей, субъективных симптомов, росту мышечной массы и снижению жировых отложений, но долгосрочное улучшение состояния здоровья полностью не достигается. Терапия гормоном роста может обострить непереносимость глюкозы у взрослых. Введение гормона роста взрослым в критических состояниях в попытке обратить катаболизм тканей приводило к неожиданному повышению смертности. Применение гормона роста в качестве допинга стало популярно среди спортсменов из-за анаболического воздействия на мышцы. Поскольку этот гормон является рекомбинантным человеческим гормоном, очень трудно обнаружить незаконное применение соматотропина при анализе на применение лекарственных средств.
'''Синтез, высвобождение и действие гормонов щитовидной железы на органы-мишени — многоступенчатый процесс, некоторые из этих ступеней — места действия лекарств'''
[[Image:Ph_11_5.jpg|250px|thumb|right|Рис. 11.5]]
Активный гормон щитовидной железы трийодтиронин (Т3) и его предшественник тироксин, или тетрайодтиронин (Т4), формируются в дополнение к анионам Г на двух ароматических кольцах остатков тирозина на большом пептиде в щитовидной железе. Для йодирования тирозина и объединения двух йодтирозиновых молекул при образовании тиронина в эпителиальных клетках щитовидной железы необходимы три фактора:
* наличие крупного полипептидного тиреоглобулина со множественными тирозиновыми остатками, подходящими для йодирования (рис. 11.5).
 
''Рис. 11.5 Фармакология гормонов щитовидной железы, (а) Тироксин (тетрайодтиронин, Т4) претерпевает дейодирование до три-йодтиронина (Т3) путем дейодирования на периферии, например в печени. Показаны места действия антитиреоидных средств. (6) Йодид активно доставляется в клетки щитовидной железы. Пероксидаза щитовидной железы, микросомальный энзим, катализирует йодирование ароматических колец тирозина в позициях 3 и 5, создавая монойодтирозин (MIT) и дийодтирозин (DIT). Пероксидаза щитовидной железы преобразовывает остатки тиронина в тиреоглобулине. Тиреоглобулин вырабатывается и накапливается в фолликулах щитовидной железы. Тиреотропный гормон (TSH) заставляет депонированный тиреоглобулин пройти эндоцитоз и лизосомальный протеолиз для высвобождения гормонов щитовидной железы, в то время как йодид ингибирует высвобождение. PTU — пропилтиоурацил.''
Иодированный тиронин хранится во внеклеточных тиреоидных фолликулах. Он высвобождается в кровь как гормон щитовидной железы после эндоцитоза фолликулярными клетками щитовидной железы. В тиреоидных фолликулах хранится тиреоидный прегормон, обычно в достаточных количествах, чтобы поддерживать высвобождение Т4 в течение примерно 6 нед. Т3 имеет в 10 раз большее сродство к тиреоидному рецептору, чем Т4, поэтому Т3 считают активной формой гормона. Хотя некоторое количество Т3 высвобождается из щитовидной железы, основная его часть формируется путем дейодирования Т4 энзимов дейодиназы. Изоформы энзимов дейодиназы в гипофизе (тип II) и на периферии (тип I) регулируются дифференцированно. При системном заболевании или голодании активность изоформ типа I сокращается, в то время как тип II сохраняется. Этот механизм приводит к сокращению периферических метаболических потребностей, предотвращая компенсаторное увеличение высвобождения TSH.
Первичный сбой в работе щитовидной железы вследствие аутоиммунного заболевания — тиреоидит Хашимото. Это самая частая причина гипотиреоза, хотя могут быть и другие причины, например воспалительные заболевания и травмы (табл. 11.8). Аутоиммунные заболевания щитовидной железы, как и многие другие аутоиммунные болезни, чаще встречаются у женщин. В редких случаях могут ассоциироваться с другими аутоиммунными эндокринными дефицитами, такими как недостаточность надпочечников, инсулинозависимый сахарный диабет или гипогонадизм. Ослабленное действие гормонов щитовидной железы может быть также вызвано пониженной выработкой TSH гипофизом (вторичный гипотиреоз) или, в редких случаях, клеточной резистентностью тканей к гормонам щитовидной железы.
 
Рис. 11.5 Фармакология гормонов щитовидной железы, (а) Тироксин (тетрайодтиронин, Т4) претерпевает дейодирование до три-йодтиронина (Т3) путем дейодирования на периферии, например в печени. Показаны места действия антитиреоидных средств. (6) Йодид активно доставляется в клетки щитовидной железы. Пероксидаза щитовидной железы, микросомальный энзим, катализирует йодирование ароматических колец тирозина в позициях 3 и 5, создавая монойодтирозин (MIT) и дийодтирозин (DIT). Пероксидаза щитовидной железы преобразовывает остатки тиронина в тиреоглобулине. Тиреоглобулин вырабатывается и накапливается в фолликулах щитовидной железы. Тиреотропный гормон (TSH) заставляет депонированный тиреоглобулин пройти эндоцитоз и лизосомальный протеолиз для высвобождения гормонов щитовидной железы, в то время как йодид ингибирует высвобождение. PTU — пропилтиоурацил.
'''Синтетические тиреоидные гормоны широко применяют для лечения гипотиреоза'''
=== Гипертиреоз ===
[[Image:Ph_11_6.jpg|250px|thumb|right|Рис. 11.6]]
'''Гипертиреоз''' — это синдром усиления тканевого обмена гормонами щитовидной железы вследствие их избыточной секреции или приема экзогенного гормона.
Гипертиреоз — это синдром усиления тканевого обмена гормонами Избыток гормонов щитовидной железы обычно возникает вследствие стимулируемого их избыточной секреции высвобождения или приема экзогенного при наличии аденомы щитовиднои железы, вырабатывающей гормоны (табл. 11.9). Часто причиной является аутоиммунное заболевание (болезнь Грейвса). При болезни Грейвса антитела активируют TSH-рецепторы, приводя к диффузному увеличению щитовидной железы, избыточному высвобождению гормонаи классическим признакам гипертиреоза — нервозности, потере массы тела, тремору, ретракции век, потоотделению, непереносимости тепла (рис. 11.6). Другие формы гипертиреоза также включают эти признаки, но только при болезни Грейвса иммунологически поражаются глазные мышцы, приводя к экзофтальму (выступанию глазного яблока) или проптозу. Другие иммунологические формы тиреоидита также могут привести к избыточной выработке гормонов, вызывая «утечку» прегормонов через воспаленную щитовидную железу.
Избыток гормонов щитовидной железы обычно возникает вследствие стимулируемого их высвобождения или при наличии аденомы щитовиднои железы, вырабатывающей гормоны (табл''Рис. 11.9)6 Признаки гипертиреоза. Часто причиной является аутоиммунное заболевание (болезнь Грейвса)Гипертиреоз характеризуется нервозностью, потерей массы тела, непереносимостью жары, усталостью. При болезни Грейвса антитела активируют TSH-рецепторыТакие признаки, приводя к диффузному увеличению щитовидной железыкак тахикардия, избыточному высвобождению гормона и классическим признакам гипертиреоза — нервозноститремор, потере массы телаускоренные рефлексы, треморугладкость кожи, ретракции векгипергидроз, потоотделению, непереносимости тепла (рис. 11возникают при гипертиреозе любой этиологии.6). Другие формы гипертиреоза также включают эти признакиПроптоз, но только при диплопия и корнеальное воспаление характерны для болезни Грейвса иммунологически поражаются глазные мышцы, приводя к экзофтальму (выступанию глазного яблока) или проптозупредоставлено C.D. Другие иммунологические формы тиреоидита также могут привести к избыточной выработке гормоновForbes, вызывая «утечку» прегормонов через воспаленную щитовидную железуW.F. Jackson).''
Таблица 11.9 '''Причины гипертиреоза'''
*Прием гормонов щитовидной железы
*Опухоли, вырабатывающие человеческий хорионический гонадотропин
 
Рис. 11.6 Признаки гипертиреоза. Гипертиреоз характеризуется нервозностью, потерей массы тела, непереносимостью жары, усталостью. Такие признаки, как тахикардия, тремор, ускоренные рефлексы, гладкость кожи, гипергидроз, возникают при гипертиреозе любой этиологии. Проптоз, диплопия и корнеальное воспаление характерны для болезни Грейвса (предоставлено C.D. Forbes, W.F. Jackson).
Основные причины неиммунологически опосредованного гипертиреоза — аденомы, как одиночные, так и множественные (многоузловой зоб). Множественные аденомы часто встречаются в пожилом возрасте и обычно клинически выражены слабо. Иногда секреция гормона щитовидной железой и высвобождение его из аденомы превышает суточную потребность, что и ведет к гипертиреозу.
Общая гомеостатическая функция углеводного и жирового обмена — поставка энергии для использования, депонирования и мобилизации запасов энергии во время голода.
Регулирование обмена углеводов и жирных кислот — ключевая функция инсулина [[инсулин]]а и ассоциированных гормонов. Поддержание адекватного уровня глюкозы в крови особенно важно для мозга и скелетных мышц.
'''Стимуляция инсулиновых рецепторов активирует транспорт глюкозы на клеточных мембранах инсулин-чувствительных тканей'''
Внутриклеточные механизмы действия инсулина еще до конца не выяснены. Инсулиновые рецепторы расположены на мембранах клеток-мишеней и связаны с тирозинкиназой (рис. 11.7). Фосфорилирование внутриклеточных киназ изменяет их энзимную активность, приводя к последовательным фосфорилирующим и дефосфорилирующим этапам во внутриклеточной сигнальной цепи. Стимуляция инсулиновых рецепторов ведет к транслокации транспортеров глюкозы из мест эндосомально-го хранения к мембране клетки и к увеличению поглощения глюкозы. Упорядочивание транспортеров глюкозы в тканях-мишенях важно для панкреатических β-клеток, регулирующих выработку инсулина для глюкозо-чувствительных механизмов.
[[Image:Ph_11_7.jpg|250px|thumb|right|Рис. 11.7]]''Рис. 11.7 Действие инсулина, (а) Рецептор инсулина — гетероди-мерический трансмембранный рецептор, состоящий из двух а- и двух (3-субьединиц. Внутриклеточные части (3бета-субъединиц содержат тирозинкиназу (см. главу 3). Возбуждение инсулинового рецептора приводит к фосфорилированию внутриклеточных сигнальных молекул. Фосфорилирование остатков тирозинкиназы приводит к активации каскадов серин/треонин киназы, (б) Внутриклеточные каскады киназы вызывают перемещение транспортеров глюкозы от эндосомального пространства до плазменной мембраны, где они увеличивают поглощение глюкозы.''[[Image:Ph_11_8.jpg|250px|thumb|right|Рис. 11.8]]''Рис. 11.8 Выработка инсулина. Секреция инсулина в панкреатических р-клетках стимулируется высвобождением Са2+ из эндоплазма-тической части потенциал-чувствительных каналов, а также притоком внеклеточного Са2+. АТФ-зависимый К+-канал на плазменной мембране поддерживает внутриклеточный потенциал покоя. Блокада К+-канала сульфонилмочевиной или меглитинидами приводит к деполяризации и активации Са2+-канала и в итоге к повышенной секреции. АТФ — аденозинтрифосфат.''
Высвобождение инсулина происходит в ответ на такие стимулы, как глюкоза, аминокислоты, гормоны, вырабатываемые в желудочно-кишечном тракте. Эти стимулы ведут к деполяризации β-клеток в панкреатических островках Лангерганса и Са2+-опосредованному экзоцитозу инсулина в воротную вену (рис. 11.8). Потенциал мембраны β-клеток регулируется АТФ-чувствительными калиевыми каналами (1к(атф)), являющимися мишенью для сульфонамидных гипогликемических средств. Максимально высокая концентрация инсулина — в печени, перед попаданием в системный кровоток.
=== Сахарный диабет ===
Свое название [[Сахарный диабет - действие инсулина|сахарный диабет ]] получил из-за присутствия глюкозы в моче при этом заболевании. Известны два основных типа сахарного диабета, которые имеют сходное течение гипергликемии и сосудистых осложнений. Они отличаются по патогенезу и способности остаточного инсулина подавлять формирование кетонных тел из жирных кислот (табл. 11.12).
Сахарный диабет I типа (инсулинозависимый, со склонностью к кетоацидозу) возникает вследствие аутоиммунного разрушения панкреатических (3-клеток. Аутоиммунный процесс начинается за несколько лет до прекращения выработки инсулина, и к моменту диагностики сахарного диабета большинство (3-клеток уже безвозвратно повреждены. Поскольку это обычно происходит до 30 лет, этот тип сахарного диабета называют юношеским диабетом. Главная особенность диабета I типа — неспособность поджелудочной железы вырабатывать даже небольшое количество инсулина, требуемое для подавления формирования кетонов, что приводит к рецидивам диабетического кетоацидоза.
'''Для подбора дозы инсулина применяют различные препараты инсулина с разными схемами абсорбции'''
Перед тем как в 1930-е гг. открыли и стали применять инсулин, диабет I типа был фатальным заболеванием в детском возрасте. Разнообразие [[Инсулинотерапия (препараты инсулина)|препаратов инсулина ]] обеспечивает физиологическую схему его замещения (табл. 11.13). Инсулиновый насос с прикрепленной к нему маленькой подкожной иглой, поставляющий основную часть инсулина и маленькие болюсы перед едой, является самым успешным способом воспроизведения физиологической секреции инсулина. Однако этот метод не обеспечивает лучший контроль глюкозы, чем у пациентов, точно соблюдающих инъекционную схему введения инсулина. Успешность режима многократных инъекций зависит от наличия инсулинов с различными фармакокинетическими характеристиками. Продолжительность действия разных инсулинов (см. далее) различна, т.к. гипогликемический ответ на каждый тип инсулина индивидуален у разных пациентов, что требует постоянного контроля.
Инсулины короткого действия (стандартные) применяют для быстрой доставки инсулина в связи с приемом пищи. Большинство стандартных инсулинов — это человеческий инсулин, произведенный по технологии рекомбинантной ДНК, но имеется и полусинтетический стандартный инсулин из свиного инсулина. Стандартный инсулин состоит из суспензии цинк-инсулина, но не имеет иных добавок для задержки всасывания. Инсулины короткого действия формируют димерические или гекзамерические агрегаты для замедления абсорбции. Абсорбция из подкожной клетчатки идет медленнее, чем из поджелудочной железы, поэтому такие препараты вводят за 30-45 мин до еды, а действуют они в течение 6 часов.
Для воспроизведения нормальной функции поджелудочной железы больные диабетом I типа нуждаются в низких уровнях инсулина во время сна, более высоких уровнях инсулина в период с утра до ночи и значительного увеличения уровня быстродействующего инсулина во время приема пищи (рис. 11.9). Первые две цели могут быть достигнуты введением инсулина среднего действия (NPH, ленте) или длительного действия (ультраленте) 2 раза в день, идеально — вечером и утром. Вечернюю дозу инсулина длительного действия выбирают таким образом, чтобы достичь нормогликемии перед завтраком без ночной гипогликемии. При достижении нормогликемии перед завтраком утреннюю дозу инсулина длительного действия регулируют так, чтобы добиться нормогликемии перед вечерним приемом пищи. Гларгин позволяет выполнить оба эти условия путем однократного введения. Короткодействующие (стандартные или мономерные) аналоги инсулина нужно вводить с каждым приемом пищи для достижения уровня глюкозы в крови менее 9 ммоль/л (160 мг/дл) в течение 2 час после приема пищи. При изменениях в режиме питания и физической нагрузки дозу короткодействующего инсулина корректируют в зависимости от уровня глюкозы в крови перед приемом пищи.
[[Image:Ph_11_9.jpg|250px|thumb|right|Рис. 11.9]]
''Рис. 11.9 Инсулинотерапия. Уровни инсулина в крови после введения различных препаратов инсулина по сравнению с уровнями инсулина и глюкозы у здорового человека. Вводимый инсулин не компенсирует связанные с приемом пищи нарушения выброса инсулина панкреатическими железами из-за удаленности места введения. Цель введения препаратов инсулина состоит в координации пика поставки инсулина с режимом питания. Системные уровни инсулина при инсулинотерапии сахарного диабета I типа выше, чем при эндогенном панкреатическом регулировании. Панкреатический выброс инсулина в систему воротной вены может подавить гликонеогенез в печени при более низких дозах, чем необходимо при системном введении инсулина. NPH — нейтральный протамин Хагедорна.''
Трудности, связанные с дневным введением инсулина, можно решить путем использования утром инсулина средней длительности действия (вместо инсулина длительного действия) и регулированием времени приема пищи.
Производные сульфонилмочевины и меглитиниды повышают функцию β-клеток, блокируя АТФ-зависимые К+-каналы (1к(атф)) в клетках поджелудочной железы. В результате они вызывают деполяризацию, активирующую потенциал-зависимые Са2+-каналы, увеличивая внутриклеточные концентрации Са2+, который, в свою очередь, повышает выброс инсулина в кровь.
 
Рис. 11.9 Инсулинотерапия. Уровни инсулина в крови после введения различных препаратов инсулина по сравнению с уровнями инсулина и глюкозы у здорового человека. Вводимый инсулин не компенсирует связанные с приемом пищи нарушения выброса инсулина панкреатическими железами из-за удаленности места введения. Цель введения препаратов инсулина состоит в координации пика поставки инсулина с режимом питания. Системные уровни инсулина при инсулинотерапии сахарного диабета I типа выше, чем при эндогенном панкреатическом регулировании. Панкреатический выброс инсулина в систему воротной вены может подавить гликонеогенез в печени при более низких дозах, чем необходимо при системном введении инсулина. NPH — нейтральный протамин Хагедорна.
Антидиабетический эффект сульфонилмочевины обнаружили случайно. Было замечено, что антимикробные средства сульфонамидной группы иногда вызывают гипогликемию. Препараты сульфонилмочевины двух поколений сходны по своему действию и безопасности, но различны по дозам и частоте введения (см. табл. 11.14). Препараты сульфонилмочевины первого поколения (толбутамид, хлорпропамид, ацетогексамид и толазамид) требуют более высоких дозировок, но имеют такую же эффективность, как и препараты сульфонилмочевины второго поколения. Препараты второго поколения активируются из неактивных форм в печени, следовательно, при их приеме риск гипогликемии для пациентов со сниженной функцией почек меньше, чем при приеме средств, выводимых почками, например хлорпропамида. Хотя глипизид и глибурид отличаются Т1/2 в плазме (3 час и 10 час соответственно), но оба имеют одинаковую эффективность единичной ежедневной дозы. У этих препаратов нет тесной корреляции концентраций в плазме с уровнем снижения глюкозы.
В настоящее время в клинической практике используют TZD (розиглитазон, пиоглитазон), вызывающие усиление действия инсулина на скелетные мышцы, жировые ткани и печень. Это приводит к увеличению доставки глюкозы в ткани и уменьшению гликонеогенеза в печени (рис. 11.10). Периоды полувыведения розиглитазона (3-4 час) и пиоглитазона (3-7 час) достаточно короткие, тем не менее их введение 1-2 раза в день оказывает необходимый терапевтический эффект. Для достижения стабильного фармакодинамического эффекта нужно несколько недель. Как лекарственное средство, понижающие уровень глюкозы, TZD менее эффективны, чем метформин или сульфаниламиды. К преимуществам TZD относятся легкость подбора дневной дозы, низкий гипогликемический потенциал и способность увеличивать холестерин ЛПВП. Результатов долгосрочных исследований влияния на сердечно-сосудистую систему пока нет, однако известно, что низкий уровень холестерина ЛПВП — это общая особенность дислипидемии и заболеваний коронарных артерий при диабете II типа. TZD могут вызывать увеличение массы тела и объема крови, что усиливает застойную сердечную недостаточность. Первый препарат этого класса (троглитазон) был снят с производства из-за токсичности для печени, но у лекарств, применяемых в настоящее время, гепатотоксичность не наблюдается.
[[Image:Ph_11_10.jpg|250px|thumb|right|Рис. 11.10]]
''Рис. 11.10 Скелетные мышцы, жировая ткань и печень. Триазолидиндионы поступают в цитозоль и связываются с PPAR-y-рецепторами. Комплекс входит в ядро и активирует ответный сигнал. Усилительный каскад приводит к увеличению чувствительности к инсулину. PPAR-y — рецепторы активации пролиферации пероксисом у-подкласса.''
Ингибиторы кишечной а-глюкозидазы (акарбоза, митлиголь) обеспечивают альтернативную стратегию в лечении диабета II типа, уменьшая поглощение глюкозы. Ингибиторы а-глюкозидазы менее эффективны, чем другие пероральные препараты, но полезны для пациентов с преобладающей послеобеденной гипергликемией. Препараты принимают непосредственно перед едой, они выводятся кишечником без значительного системного всасывания. Из-за нарушенной абсорбции глюкозы и повышенной ее доставки в ободочную кишку ингибиторы кишечной а-глюкозидазы часто вызывают метеоризм и спастические боли в области желудка.
Самый простой подход к инсулинотерапии — однократное введение на ночь инсулина длительного действия (например, в дозе 20 ЕД) и использование днем перорального препарата. Этот метод хорошо переносят пациенты, и он дает очень небольшое инсулин-связанное увеличение массы тела. Если гипергликемия сохраняется даже при дозе свыше 50 ЕД на ночь, нужно добавлять дневные инъекции инсулина. Больным диабетом с минимальной резистентностью необходимо 0,5-1,0 мкг/кг инсулина в день, в основном инсулина длительного или среднего действия. Но для большинства пациентов с диабетом II типа дозу нельзя предварительно рассчитать из-за переменного характера инсулинорезистентности.
 
Рис. 11.10 Скелетные мышцы, жировая ткань и печень. Триазолидиндионы поступают в цитозоль и связываются с PPAR-y-рецепторами. Комплекс входит в ядро и активирует ответный сигнал. Усилительный каскад приводит к увеличению чувствительности к инсулину. PPAR-y — рецепторы активации пролиферации пероксисом у-подкласса.
'''Коррекция гликемии снижает риск осложнений со стороны органов-мишеней'''
Многие психоневрологические жалобы были отнесены к гипогликемии в результате неправильного применения теста на переносимость перорального приема глюкозы. Патологическая гипогликемия может развиться вследствие разных причин, но классический признак — наличие инсулин-вырабатывающей опухоли поджелудочной железы (инсу-линомы). Диазоксид — препарат, сокращающий секрецию инсулина путем активации 1К(АТФ)-каналов (эффект, противоположный ингибирующему эффекту препаратов сульфонилмочевины на эти каналы) и, следовательно, гиперполяризации мембраны панкреатических β-клеток. Это состояние лечат в основном хирургическим путем, хотя при неоперабельных опухолях иногда используют терапию октреотидом или диазоксидом.
[[Глюкагон|ГЛЮКАГОН]]. Природный контринсулярный гормон глюкагон вводят парентерально. Короткий период полувыведения ограничивает его использование при неотложной коррекции тяжелой гипогликемии. Тем не менее, пероральный прием глюкозы для пациентов в сознании — это первая помощь во время приступа гипогликемии.
== Нарушения липидного обмена ==
Поступающие с пищей и эндогенные липиды являются строительным материалом для функционально важных компонентов, например клеточных мембран, желчи, стероидных гормонов и межклеточных сигнальных молекул (простагландинов и лейкотриенов). Процессы потребления жиров с пищей, синтеза липидов в печени и их транспортировка в ткани интегрированы в белково-липидный метаболизм (рис. 11.11).
[[Image:Ph_11_11.jpg|250px|thumb|right|Рис. 11.11]]
''Рис. 11.11 Метаболизм липопротеинов. Поглощенные свободные жирные кислоты (FFA) преобразуются в триглицериды (ТГ), объединенные с апопротеином (Аро) В-48, и покрываются монослоем фосфолипидов для формирования хиломикронов (CHYLO) в кишечной лимфе. Точно так же триглицериды, синтезируемые в печени, объединяются с Аро В-100, формируя липопротеин очень низкой плотности (ЛПОНП) в печени. Эти богатые триглицеридом липопротеины получают белки Аро С от липопротеина высокой плотности (ЛПВП). Аро С является кофактором для липопротеинлипазы в сосудистом эндотелии, которая поставляет жирные кислоты тканям. Поскольку богатые триглицеридом частицы усвоены, ЛПВП возвращает Аро С и фосфолипиды для многократного использования вновь рождающимися частицами. Частицы захватываются печенью и выделяются в частицы липопротеинов низкой плотности (ЛПНП), содержащие эфиры холестерина (СЕ) как их основную составляющую.''
'''Липопротеиновая система — источник триглицерида периферических тканей и регулятор обмена холестерина'''
В дополнение к курсирующим к периферийным тканям триглицеридам, система липопротеина организует также транспорт холестерина. Печень синтезирует холестерин и липопротеины низкой плотности (ЛПНП) для поставки холестерина в ткани. Холестерин поглощается нуждающимися в нем тканями посредством белка ЛПНП, относящегося к АПНП-редепторам, а также нерецепторными механизмами. Дефекты АПНП-рецепторов приводят к наследственной гиперхолестеринемии, белково-липидным нарушениям, характеризующимся очень высокими уровнями холестерина, и преждевременному атеросклерозу.
 
Рис. 11.11 Метаболизм липопротеинов. Поглощенные свободные жирные кислоты (FFA) преобразуются в триглицериды (ТГ), объединенные с апопротеином (Аро) В-48, и покрываются монослоем фосфолипидов для формирования хиломикронов (CHYLO) в кишечной лимфе. Точно так же триглицериды, синтезируемые в печени, объединяются с Аро В-100, формируя липопротеин очень низкой плотности (ЛПОНП) в печени. Эти богатые триглицеридом липопротеины получают белки Аро С от липопротеина высокой плотности (ЛПВП). Аро С является кофактором для липопротеинлипазы в сосудистом эндотелии, которая поставляет жирные кислоты тканям. Поскольку богатые триглицеридом частицы усвоены, ЛПВП возвращает Аро С и фосфолипиды для многократного использования вновь рождающимися частицами. Частицы захватываются печенью и выделяются в частицы липопротеинов низкой плотности (ЛПНП), содержащие эфиры холестерина (СЕ) как их основную составляющую.
Печень также синтезирует компоненты частиц ЛПВП, которые содержат аполипопротеины, способствующие этерификации холестерина и переходу к частицам, богатым триглицеридами. ЛПВП забирает неэтерифицированный холестерин и компоненты апопротеина (Аро) С у хиломикронов и остатков ЛПОНП для повторного использования новыми частицами, богатыми триглицеридами. Этот «центростремительный» поток холестерина — один из механизмов его удаления из периферического кровообращения и распределения в частицы, богатые триглицеридами. Частицы ЛПВП содержат довольно много холестерина, но в них нет липопротеинов В и Е, необходимых для рецепторно-обусловленного поглощения частиц ЛПНП и ЛПСП. Холестерин в частицах ЛПВП и триглицерид-обогащенных частицах ЛПОНП является менее атерогенным, чем холестерин, содержащийся в частицах ЛПНП и ЛПСП.
Лекарственная терапия гиперлипидемий включает целый ряд средств, влияющих на синтез холестерина, снижение холестерина в желчи и метаболизм ЛПНП и ЛПОНП. Метаболизм холестерина и липопротеинов под действием таких средств показан на рис. 11.12.
[[Image:Ph_11_12.jpg|250px|thumb|right|Рис. 11.12]]
''Рис. 11.12 Место действия гиполипидемических средств. Ингибиторы гидроксиметилглутарил коэнзим А редуктазы (ГМГ-КоА-редуктазы) приводят к увеличению плотности рецепторов липопротеина низкой плотности (ЛПНП-R) на гепацитах и усилению клиренса ЛПНП в плазме. Секвестранты желчных кислот также увеличивают клиренс ЛПНП и потерю холестерина в желчи. Производные фиброевой кислоты усиливают действие липопротеинлипазы (LPL) в периферических тканях, что ведет к усилению клиренса частиц, богатых триглицеридами. Никотиновая кислота ограничивает приток свободных жирных кислот (FFA) из жировой ткани, уменьшая выработку липопротеинов очень низкой плотности (ЛПОНП). При сокращении выработки продукции ЛПОНП для синтеза ЛПНП доступно меньше ремнантов.''
<table border="1">
<p>Хиломикронов увеличен, ЛПОНП увеличен</p></td></tr>
</table>
 
Рис. 11.12 Место действия гиполипидемических средств. Ингибиторы гидроксиметилглутарил коэнзим А редуктазы (ГМГ-КоА-редуктазы) приводят к увеличению плотности рецепторов липопротеина низкой плотности (ЛПНП-R) на гепацитах и усилению клиренса ЛПНП в плазме. Секвестранты желчных кислот также увеличивают клиренс ЛПНП и потерю холестерина в желчи. Производные фиброевой кислоты усиливают действие липопротеинлипазы (LPL) в периферических тканях, что ведет к усилению клиренса частиц, богатых триглицеридами. Никотиновая кислота ограничивает приток свободных жирных кислот (FFA) из жировой ткани, уменьшая выработку липопротеинов очень низкой плотности (ЛПОНП). При сокращении выработки продукции ЛПОНП для синтеза ЛПНП доступно меньше ремнантов.
=== Ингибиторы ГМ Г-КоА-редуктазы ===
Исследования биосинтеза холестерина [[холестерин]]а в 1950-х гг. привели к открытию средств, подавляющих разные этапы в процессе его метаболизма. Ингибирование стадии, определяющей скорость катализа и выработку фермента гидроксиметилглутарил коэнзим А редуктазы, полученного из грибов, приводит к снижению холестерина без увеличения токсичных производных стерина. ГМГ-КоА-редуктаза высвобождает предшествующую холестерину мевалоновую кислоту из кофермента А. Конкурентные ингибиторы ГМГ-КоА-редуктазы (так называемые ста-тины) обусловливают компенсаторные клеточные реакции — повышение экспрессии ГМГ-КоА-редуктазы и рецепторов ЛПНП.
Большинство статинов подвергаются пресистемному метаболизму в печени на 50-80%, в результате концентрация препарата в большом круге кровообращения низкая. Период полувыведения составляет от 2 час (правастатин, флувастатин) и до 14 час (аторвастатин). Симвастатин и ловастатин — пролекарства, требующие фармакологически активного окислительного расщепления лактонового кольца.
=== Ниацин ===
[[Ниацин ]]([[Никотиновая кислота (витамин В3)|никотиновая кислота]]) — предшественник никотинамидадениндинуклеотида (НАД) и его фосфата — НАДФ. Действие ниацина на метаболизм липопротеина не зависит от его роли предшественника никотинамида, хотя ниацин используют для лечения гиперлипидемии на протяжении многих лет. Механизм действия изучен плохо, но известно, что препарат уменьшает выработку ЛПОНП путем снижения транспорта жирных кислот от жировой ткани в печень. Снижение концентрации ЛПОНП ведет к уменьшению обмена холестерина и ЛПВП (таким образом, к более высоким концентрациям холестерина), а также к уменьшению поставки ЛПСП в печень для образования ЛПНП. Вследствие таких компенсаторных изменений в обмене жиров и белков ниацин оптимизирует терапевтический эффект повышения ЛПВП, понижая уровень холестерина ЛПНП и триглицеридов, поэтому ниацин рекомендуется при лечении комбинированных гиперлипидемий.
Побочное действие ниацина зависит от дозы и проявляется покраснением и зудом кожи. Этот эффект обусловлен простагландином. Сопутствующий прием аспирина предупреждает развитие этих нежелательных явлений. Организм пациентов, длительное время принимающих ниацин, толерантен к этим эффектам, но не к терапевтическому действию на липопротеины. Другими побочными эффектами могут быть обострение язвы желудка и двенадцатиперстной кишки, гипер-урикемия, непереносимость глюкозы, поражение печени и скелетных мышц. Это может ограничить применение ниацина. В то же время препараты ниацина с замедленным высвобождением пациенты переносят хорошо. Ниацин с замедленным высвобождением лучше снижает уровень ЛПНП, но максимальная эффективность разных форм ниацина сходна.
== Нарушения синтеза глюкокортикостероидов и других гормонов, вырабатываемых при стрессах ==
[[Гипоталамо-гипофизарно-надпочечниковая система ]] вырабатывает гормоны надпочечника: глюкокортикостероиды и эпинефрин. Они оказывают эффект, определяемый термином «общий адаптационный синдром». Б 1940-х гг. Ганс Селье впервые употребил этот термин для описания адреналинового ответа на ситуацию «бороться или бежать». Эта концепция гормонально-регулируемой адаптации к условиям острого физиологического стресса, например при травме, кровопотере, соматической инфекции или воздействии окружающей среды, обеспечивает основу для понимания различного действия глюкокортикостероидов и катехоламинов (рис. 11.13).[[Image:Ph_11_13.jpg|250px|thumb|right|Рис. 11.13]]''Рис. 11.13 Глюкокортикостероиды и адаптация к стрессу, (а) Множество нейросенсорных путей регулируют секрецию кортикотропин-рилизинг гормона (CRH) в гипоталамусе. CRH стимулирует выброс адренокортикотропного гормона (АСТН). АСТН усиливает синтез кортизола в надпочечниках. Кортизол поступает в ткани, где связывает цитозольные глюкокортикостероидные рецепторы (GR) (б). Эти рецепторные комплексы перемещаются к ядру, где запускают транскрипцию элементов ответа на глюкокортикостероиды (CRE). Продукты этих генов оказывают разнообразные эффекты на ткани-мишени: увеличение гликонеогенеза, липолиз, катаболизм ткани, подавление лимфоцитарной функции, вазопрессорный эффект и влияние на поведение, (в) Дневная схема синтеза кортизола отражает пиковую деятельность гипоталамо-гипофизарно-надпочечниковой системы рано утром. мРНК — матричная рибонуклеиновая кислота; ЦНС — центральная нервная система.''
При стрессе гормон гипоталамуса, кортикотропин-рилизинг гормон (CRH), приводит к выбросу гипофизарного адренокортикотропного гормона,что обеспечивает повышенную выработку кортизола в зоне веретенных клеток надпочечников. Симпатическая нервная система высвобождает нейронный норэпинефрин и секреты эпинефрина из надпочечниковых медулл.
 
Рис. 11.13 Глюкокортикостероиды и адаптация к стрессу, (а) Множество нейросенсорных путей регулируют секрецию кортикотропин-рилизинг гормона (CRH) в гипоталамусе. CRH стимулирует выброс адренокортикотропного гормона (АСТН). АСТН усиливает синтез кортизола в надпочечниках. Кортизол поступает в ткани, где связывает цитозольные глюкокортикостероидные рецепторы (GR) (б). Эти рецепторные комплексы перемещаются к ядру, где запускают транскрипцию элементов ответа на глюкокортикостероиды (CRE). Продукты этих генов оказывают разнообразные эффекты на ткани-мишени: увеличение гликонеогенеза, липолиз, катаболизм ткани, подавление лимфоцитарной функции, вазопрессорный эффект и влияние на поведение, (в) Дневная схема синтеза кортизола отражает пиковую деятельность гипоталамо-гипофизарно-надпочечниковой системы рано утром. мРНК — матричная рибонуклеиновая кислота; ЦНС — центральная нервная система.
Кортизол усиливает синтез эпинефрина и повышает чувствительность периферических тканей к действию катехоламинов. Общий эффект глюкокортикостероидов и катехоламинов заключается в подготовке организма к высокой физической или стрессовой активности: повышается гликонеогенез и липолиз, мобилизуется доставка энергии в мышцы, активируется ЦНС, повышается артериальное давление, подавляется воспаление и задерживается заживление ран.
* Психоневрологические расстройства
Другой способ оптимизации терапии — местное применение глюкокортикостероидов при псориазе и контактном дерматите (см. главу 18) и ингаляции при астме и хронических обструктивных болезнях легких.
При [[Ингаляционный путь введения|ингаляциях ]] достигаются более высокие местные концентрации глюкокортикостерондов при незначительном увеличении их уровня в крови, таким образом уменьшаются [[Кортикостероиды - побочные эффекты (см. главу 14)|побочные эффекты]]. Тем не менее топические глюкокортикостероиды при лечении хронических заболеваний усваиваются в количествах, достаточных для подавления функции гипофиза. Терапевтический эффект также улучшается при приеме плохо усваиваемых или быстро разлагающихся в печени глюкокортикостероидов.
'''Глюкокортикостероиды различаются по эффективности, продолжительности действия и степени минералокортикостероидной активности'''
Если терапию гидрокортизоном проводят при надпочечниковой недостаточности для создания естественного профиля секреции кортизола, то утром и после обеда назначают неравные дозы препарата, чтобы более точно воспроизвести физиологическую реакцию (рис. 11.14). Эндогенно вводят кортизол в дозе = 10 мг/сут (28 ммоль/сут). Гидрокортизон высокоактивен, но при замене часто бывают необходимы большие ежедневные дозы.
[[Image:Ph_11_14.jpg|250px|thumb|right|Рис. 11.14]]
''Рис. 11.14 Заместительная терапия глюкокортикостероидами. В норме у взрослого человека вырабатывается = 10 мг/сут кортизола. Синтез кортизола претерпевает выраженные изменения в течение дня, с повышением в утренние часы перед пробуждением. Физиологическая замена оральным гидрокортизоном имитирует этот эндогенный ритм.''
Синтетические глюкокортикостероиды обладают различной минералокортикостероидной активностью, синтетические минералокортикостероиды (например, флудрокортизон) также назначают при лечении недостаточности функции надпочечников.
В основе всех глюкокортикостероидов, природных и синтетических, лежит стероидное кольцо — 17-углеродная химическая структура из четырех соединенных колец. Стероидное кольцо, используемое в эндогенном синтезе глюкокортикостероидов, образуется из холестерина. Эндогенные глюкокортикостероиды в основном имеют гидроксильные радикалы, прикрепленные к стероидному кольцу в типичных местах. Радикалы многих синтетических глюкокортикостероидов представлены преимущественно фтором. Эти радикалы не изменяют существенно действия глюкокортикостероидов, однако определяют степень минералокортикостероидной активности. Помимо изменения соотношения глюкокортикостероидной и минералокортикостероидной активности, радикалы изменяют фармакокинетику. Например, флутиказон очень плохо усваивается, поэтому его применяют местно, но он очень быстро метаболизируется в печени.
 
Рис. 11.14 Заместительная терапия глюкокортикостероидами. В норме у взрослого человека вырабатывается = 10 мг/сут кортизола. Синтез кортизола претерпевает выраженные изменения в течение дня, с повышением в утренние часы перед пробуждением. Физиологическая замена оральным гидрокортизоном имитирует этот эндогенный ритм.
<table border="1">
<p>18-36</p></td></tr>
</table>
 
Использование глюкокортикостероидов при воспалениях, аллергии и респираторных заболеваниях рассматривается в главах 14 и 18.
'''Синдром Кушинга —результат избытка глюкокортикостероидов'''
Роль глюкокортикостероидов проявляется наиболее наглядно при сильном стрессе, но кортизол вырабатывается в биологически активном количестве также и в нестрессовых условиях. Выброс и синтез кортизола соответствует дневному ритму, увеличиваясь в предрассветные часы из-за активации системы ГГН (см. рис. 11.13, 11.14). Таким образом, выработка кортизола максимальна рано утром, а к ночному периоду она может уменьшиться до очень низкого уровня.
[[Image:Ph_11_5.jpg|250px|thumb|right|Рис. 11.5 Адренокортикальная аденома, причина синдрома Кушинга (предоставлено Thomas Ulbright).]]
Избыточный уровень глюкокортикостерондов приводит к развитию синдрома Кушинга, характеризующегося мышечной слабостью, перераспределением отложения жира в подкожной клетчатке, луновидным лицом, пурпурными стриями на коже брюшной стенки, атрофией кожи, ломкостью капилляров, гипертензией, непереносимостью глюкозы и психоневрологическими нарушениями. Синдром Кушинга развивается на фоне множества причин, но обычно он возникает из-за АСТН-синтезирующей аденомы гипофиза (синдром Кушинга) (рис. 11.15), кортизол-вырабатывающей опухоли надпочечников или атопического синтеза АСТН в других новообразованиях (например, нейроэндокринными опухолями легких и кишечника). Признаки и проявления синдрома Кушинга перечислены в табл. 11.18.
Основное лечение синдрома Кушинга — хирургическое удаление гормонсинтезирующей опухоли. Если хирургическое вмешательство не эффективно, для коррекции избытка глюкокортикостерондов применяют лекарственную терапию. Самые эффективные препараты — ингибиторы надпочечникового синтеза глюкокортикостерондов (кетоконазол, метирапон, аминоглутетимид и митотан). Лекарств, уменьшающих выработку АСТН аденомой гипофиза, не существует, а эффективность антагониста глюкокортикостероидных рецепторов мифепристо-на при хроническом синдроме Кушинга не подтверждена. Ингибиторы биосинтеза стероидов действуют на различные этапы синтеза кортизола, поэтому для них характерно сопутствующее влияние на другие стероиды надпочечников (рис. 11.16).
 
Рнс. 11.15 Адренокортикальная аденома, причина синдрома Кушинга (предоставлено Thomas Ulbright).
Таблица 11.18 Проявления синдрома Кушинга
*Атрофия скелетных мышц
*[[Ожирение]]
*Луновидное лицо
*Пигментированные стрии на животе
*[[Акне]]
*Гирсутизм
*Психоневрологические расстройства
*[[Остеопороз]]
*Недоразвитие половой системы
'''КЕТОКОНАЗОЛ И АМИНОГЛУТЕТИМИД'''. Кетоконазол, антимикотическое производное имидазола (см. главу 6), и аминоглутетимид, противоэпилептический препарат (см. главу 8), подавляют различные этапы стероидогенеза, включая точку входа разветвления боковой цепи холестерина, а также другие важные этапы биосинтеза кортизола и андрогена (см. рис. 11.16). Механизм действия кетоконазола при лечении избытка глюкокортикостероидов состоит в подавлении активности ферментов цитохрома Р-450, вовлеченного в биосинтез стероидов, ингибирующих биосинтеза эргостероида в мембранах грибов, что обусловливает антимикотический эффект препарата.
[[Image:Ph_11_16.jpg|250px|thumb|right|Рис. 11.16]]
''Рис. 11.16 Ингибиторы синтеза глюкокортикостерондов. Ингибиторы надпочечникового синтеза глюкокортикостероидов действуют на различных этапах синтеза. Кетаконазол, аминоглутетимид и митотан действуют в начале ответвления боковой цепочки холестерина (P-450scc), который поставляет стероидогенный экстракт в схему синтеза. Кетоконазол и аминоглутетимид являются конкурентными ингибиторами фермента цитохрома Р-450 и действуют также в других местах схемы синтеза. Эти агенты уменьшают секрецию надпочечниковых андрогенов (DHEA и андростенедиона) подавлением 17а-гидроксилазы (Р-450с17), что может привести к недостатку андрогенов у мужчин. Метирапон ингибирует фермент конечного этапа синтеза кортизола, llp-гидроксилазу (Р-450с11), приводя к наращиванию предшественников с андрогенной потенцией минералокортикостероида. 3pHSD/ISOM — зргидроксистериод изомераза; DHEA — дегидроэпиандростерон; Р-450с21 —21а-гидроксилаза.''
'''ПОБОЧНЫЕ ЭФФЕКТЫ КЕТОКОНАЗОЛА, АМИНОГЛУТЕТИМИД А И МЕТИ РАЙОНА'''. Все ферменты, участвующие в биосинтезе стероидов, подавляемом кетоконазолом, аминоглутетимидом и метирапоном, принадлежат к большому семейству ферментов цитохрома Р-450, которые катализируют реакцию монооксигенации. Ферменты цитохрома Р-450 вовлечены во многие биосинтетические реакции лекарственного метаболизма, что обусловливает некоторые побочные эффекты препаратов. Поскольку выработка стероидов ограничена и многие участки выработки энзимов ингибированы, биологически активные молекулы предшественников стероидов не накапливаются. Однако эти препараты подавляют также синтез половых стероидов, что может привести к атрофии половой системы у мужчин.
 
Рис. 11.16 Ингибиторы синтеза глюкокортикостерондов. Ингибиторы надпочечникового синтеза глюкокортикостероидов действуют на различных этапах синтеза. Кетаконазол, аминоглутетимид и митотан действуют в начале ответвления боковой цепочки холестерина (P-450scc), который поставляет стероидогенный экстракт в схему синтеза. Кетоконазол и аминоглутетимид являются конкурентными ингибиторами фермента цитохрома Р-450 и действуют также в других местах схемы синтеза. Эти агенты уменьшают секрецию надпочечниковых андрогенов (DHEA и андростенедиона) подавлением 17а-гидроксилазы (Р-450с17), что может привести к недостатку андрогенов у ■■■'''мужчин. Метирапон ингибирует фермент конечного этапа синтеза кортизола, llp-гидроксилазу (Р-450с11), приводя к наращиванию пред-J60 шественников с андрогенной потенцией минералокортикостероида. 3pHSD/ISOM — зр-гидроксистериод изомераза; DHEA — дегидроэпи-шщдростерон; Р-450с21 —21а-гидроксилаза.
'''МИТОТАН'''. Подавляет синтез стероидов в АСТН-регулируемом этапе разветвления боковой цепи холестерина, а также вызывает атрофию коры надпочечников. Митотан применяют только при лечении рака надпочечников из-за желудочно-кишечной токсичности препарата.
Гипоталамус, гипофиз и надпочечники участвуют в гормональной регуляции внеклеточного объема жидкости (рис. 11.17). Гипофиз и надпочечники регулируют объем крови посредством двух взаимозависимых механизмов, контролирующих баланс Na+ (минералокортикостероиды надпочечников) и воды (гипофизарный вазопрессин).
[[Image:Ph_11_7.jpg|250px|thumb|right|Рис. 11.7]]
''Рис. 11.17 Гормональное регулирование объема плазмы крови. Рефлексы сердечно-сосудистой системы, почечные барорецепторы и отдаленные тубулярные сенсоры Na+ обеспечивают физиологический входной сигнал о циркуляционном объеме (а, б). В ответ на уменьшенную почечную перфузию клетки, расположенные рядом с клубочком и принадлежащие центростремительной клубочковой артерии, выделяют ренин. Ренин преобразовывает циркулирующий ангиотензиноген в ангиотензин I, который затем преобразуется в ангиотензин II ангиотензинпревращающим ферментом (АПФ) в сосудистом эндотелии (а). Ангиотензин II и ангиотензин III стимулируют продукцию альдостерона, что ведет к реабсорбции Na+ в дистальных извитых канальцах. Реабсорбция Na+ увеличивает осмотическое давление внеклеточной жидкости, что стимулирует гипоталамические осморецепторы к выработке вазопрессина задним отделом гипофиза. Вазопрессин приводит к увеличенной реабсорбции свободной жидкости в собирательных канальцах, что увеличивает внеклеточный объем и уменьшает осмотическое давление в плазме (в).''
Ион Na+ и сопровождающие его анионы (С1_ С1 и НС03_НС03) — главные элементы осмотической системы. Потеря Na+ через почки, кишечник и потовые железы определяет объем внеклеточной жидкости. Внеклеточная жидкость разделяется на сосудистую и внутритканевую, поэтому внеклеточный объем — главная определяющая гомеостаза объема и давления крови. Осмотический состав внеклеточной воды заставляет свободную воду перемещаться из внутриклеточных депо во внеклеточные отделы.
'''Задержка натрия в периферических почечных канальцах регулируется альдостероном, влияющим на гены, отвечающие за синтез Nа+/К+-АТФазы и обмен Na+ и Н+'''
Уровень Na+ регулируется в почках минералокортикостероидным гормоном альдостероном, ангиотензином (AT) II, симпатической нервной системой, предсердным натрийуретическим пептидом и внутренними почечными механизмами.
Почечный механизм регуляции объема крови и ренин-ангиотензин-альдостероновая система (РААС) рассмотрены в других главах. Афферентные отделы этой системы — почечные барорецепторы мелких артерий, почечные тубулярные Nа+-рецепторы и объемные рецепторы в центральных венах — стимулируют выработку ренина в ответ на уменьшение объема крови или снижение почечной перфузии. Влияние ренина на содержание в крови предшественников ангиотензиногена приводит к синтезу пептидного ангиотензина I, который преобразуется в ангиотензин II и ангиотензин III в периферических тканях, преимущественно в легких. Ангиотензин II и III действуют на гломерулозу надпочечников, повышая синтез альдостерона [[альдостерон]]а (рис. 11.18). Синтез альдостерона сходен с синтезом кортизола, за исключением двухступенчатого образования 18-альдегидной группы энзимами ангиотензин 11-чувствительной метилоксидазы I и II, представленной только в гломерулярной области надпочечников (см. рис. 11.18).[[Image:Ph_11_8.jpg|250px|thumb|right|Рис. 11.8]]''Рис. 11.18 Минералокортикостероиды и регулирование баланса Na+. Ангиотензины II и III регулируются ферментом кортико-стеронметилоксидазой (СМО) I и II, катализирующим гидроксили-рование и образование альдегида в 18-С кортикостерон. Циркулирующий альдостерон связывается с цитозольными рецепторами минералокортикостероидов (MR), которые перемещаются к ядру для регулировки экспрессии генов, реагирующих на минералокортикостероиды (MRE). Почечные трубчатые эпителиальные клетки экспрессируют №+/К+-АТФазу, люминальную Ма+-пермеазу, подкачку протона в просвет канальца и митохондриальные ферменты, необходимые для выработки аденозинтрифосфата (АТФ). Чистый эффект альдостероновой стимуляции в дистальном извитом канальце — реабсорбция Na+ и выведение К+ и Н+. Спиронолактон — конкурентный антагонист MR, а мочегонные средства амилорид и триамтерен противодействуют 1Ма+/К+-АТФазе. АДФ — аденозинди-фосфат; мРНК — матричная рибонуклеиновая кислота.''
Альдостерон, как и другие стероидные гормоны, активирует гены в тканях, служащих рецепторами минералокортикостероидов (почки, мозг, сосуды). Эти рецепторы могут связать как альдостерон, так и кортизол; они защищены от глюкокортикостероидной стимуляции уникальным энзимом, 11β-гидроксистероидной дегидрогеназой. Этот фермент присутствует в тканях-мишенях минералокортикостероидов и избирательно инактивирует любые глюкокортикостероиды около минералокортикостероидных рецепторов.
 
Рис. 11.17 Гормональное регулирование объема плазмы крови. Рефлексы сердечно-сосудистой системы, почечные барорецепторы и отдаленные тубулярные сенсоры Na+ обеспечивают физиологический входной сигнал о циркуляционном объеме (а, б). В ответ на уменьшенную почечную перфузию клетки, расположенные рядом с клубочком и принадлежащие центростремительной клубочковой артерии, выделяют ренин. Ренин преобразовывает циркулирующий ангиотензиноген в ангиотензин I, который затем преобразуется в ангиотензин II ангиотензинпревращающим ферментом (АПФ) в сосудистом эндотелии (а). Ангиотензин II и ангиотензин III стимулируют продукцию альдостерона, что ведет к реабсорбции Na+ в дистальных извитых канальцах. Реабсорбция Na+ увеличивает осмотическое давление внеклеточной жидкости, что стимулирует гипоталамические осморецепторы к выработке вазопрессина задним отделом гипофиза. Вазопрессин приводит к увеличенной реабсорбции свободной жидкости в собирательных канальцах, что увеличивает внеклеточный объем и уменьшает осмотическое давление в плазме (в).
Классическая мишень для минералокортикостероидов — эпителиальные клетки дистальных почечных спиралевидных канальцев, где минералокортикостероидная стимуляция активирует гены для Nа+/К+-АТФазы, ионные каналы и митохондриальные ферменты, необходимые для восстановления Na+ и выведения К+ и Н+. Вне почек минералокортикостероиды сохраняют ионы Na+ в желудочно-кишечном тракте и потовых железах и повышают кровяное давление, действуя на сосудодвигательный центр мозга и периферические сосуды. Минералокортикостероидные рецепторы также регулируют синтез коллагена фибробластами, и могут играть важную роль в коррекции сосудистых тканей, поврежденных ишемией или гемодинамическим стрессом. Выработка альдостерона стимулируется высоким содержанием сывороточного К+. Эта стимуляция — главный механизм защиты организма от опасной для жизни гиперкалиемии. Избыточное действие минералокортикостероидов приводит к экскреции К+ и Н+ почками (т.е. гипокалиемии и алкалозу) и увеличению объема выводимой жидкости, а нехватка минералокортикостероидов — к гиперкалиемии и уменьшению объема выводимой жидкости.
РААС и симпатическая нервная система регулируют содержание Na+ и объем внеклеточной воды, но такой контроль возможен при условии, что свободный водный баланс поддерживает осмотическое равновесие. Выраженная задержка Na+ альдостероном приводит к увеличению содержания Na+ и повышенному осмотическому давлению внеклеточной жидкости. В результате вода перемещается из внутриклеточного пространства во внеклеточное, а гиперосмотическое давление начинает влиять на осморецепторные клетки гипоталамуса. Осмотическии сенсорный механизм вызывает синтез вазопрессина (антидиуретический гормон) задней долей гипофиза (рис. 11.19; см. рис. 11.17в).
[[Image:Ph_11_19.jpg|250px|thumb|right|Рис. 11.19]]''Рис. 11.18 Минералокортикостероиды 19 Вазопрессин и регулирование водного баланса Na+. Ангиотензины II и III регулируются ферментом кортикоОсмотическая стимуляция приводит к выбросу вазопрессина из заднего отдела гипофиза (а). Вазопрессин стимулирует \/2-рецепторы удаленных трубчатых эпителиальных клеток. \/2-рецепторы — это G-белок-стеронметилоксидазой связанные рецепторы, стимулирующие адеиилилциклазу (АЦ) для увеличения внутриклеточного циклического аденозинмонофосфата (СМОцАМФ) I и II, катализирующим гидроксили-рование и образование альдегида в 18-С кортикостеронактивизирующие протеинкиназу А (ПКА). Циркулирующий альдостерон связывается с цитозольными рецепторами минералокортикостероидов Это ведет к повышенной проходимости трубчатого эпителия (MRб). Увеличение проходимости собирающего канала приводит к свободному движению воды в гипертонический почечный медуллярный интерстиций. Контроль ПКА над водными порами показан на рис. 12.11. Вазопрессин также действует на сосуды через У, которые перемещаются к ядру для регулировки экспрессии генов-рецепторы, реагирующих на минералокортикостероиды связанные с фосфолипа-зой С (MREФЛС р). Почечные трубчатые эпителиальные клетки экспрессируют №+/К+Выброс инозитол-АТФазу1, люминальную Ма+4,5-пермеазу, подкачку протона в просвет канальца трифосфата (1Р3) и митохондриальные ферменты, необходимые для выработки аденозинтрифосфата диацилглицерола (ДАГ) фосфатидилинозитолдифосфатом (АТФР1Р2). Чистый эффект альдостероновой стимуляции в дистальном извитом канальце — реабсорбция Naувеличивает внутриклеточный Са2+ и выведение К+ и Н+потенцирует вазопрессорные ответы (в). Спиронолактон — конкурентный антагонист MR, а мочегонные средства амилорид и триамтерен противодействуют 1Ма+/К+-АТФазеПо мере роста осмотического давления с увеличением уровня вазопрессина в плазме активизируется механизм чувства жажды (г). АДФ — аденозинди-фосфат; мРНК АТФ матричная рибонуклеиновая кислотааденозинтрифосфат.''
Вазопрессин — пептидный гормон с 9-амино-кислотными остатками. Циркулирующий вазопрессин стимулирует V2GPCR-peцeптopов, увеличивающие проходимость почечных канальцев через цАМФ. Это позволяет воде в канальцах перетекать во внеклеточное пространство почечного интерстициума. В результате свободная вода возвращается в депо, что вызывает в головном мозге сигнал по принципу отрицательной обратной связи. Тот же механизм вызывает, и подавляет чувство жажды. Помимо регулирования объема свободной воды вазопрессин стимулирует V1-рецепторы на мышцах сосудов, вызывая их сужение с помощью Са2+-зависимых внутриклеточных механизмов.
=== Дефицит вазопрессина (несахарный диабет) ===
 
Некоторые последствия дефицита вазопрессина и описание рецепторов, отвечающих за активность вазопрессина, приведены в главе 12.
Недостаточное действие вазопрессина возникает вследствие снижения его синтеза или ослабления его действия на почки:
 
Рис. 11.19 Вазопрессин и регулирование водного баланса. Осмотическая стимуляция приводит к выбросу вазопрессина из заднего отдела гипофиза (а). Вазопрессин стимулирует \/2-рецепторы удаленных трубчатых эпителиальных клеток. \/2-рецепторы — это G-белок-связанные рецепторы, стимулирующие адеиилилциклазу (АЦ) для увеличения внутриклеточного циклического аденозинмонофосфата (цАМФ) и активизирующие протеинкиназу А (ПКА). Это ведет к повышенной проходимости трубчатого эпителия (б). Увеличение проходимости собирающего канала приводит к свободному движению воды в гипертонический почечный медуллярный интерстиций. Контроль ПКА над водными порами показан на рис. 12.11. Вазопрессин также действует на сосуды через У,-рецепторы, связанные с фосфолипа-зой С (ФЛС р). Выброс инозитол-1,4,5-трифосфата (1Р3) и диацилглицерола (ДАГ) фосфатидилинозитолдифосфатом (Р1Р2) увеличивает внутриклеточный Са2+ и потенцирует вазопрессорные ответы (в). По мере роста осмотического давления с увеличением уровня вазопрессина в плазме активизируется механизм чувства жажды (г). АТФ — аденозинтрифосфат.
* сниженная секреция вазопрессина обычно возникает из-за повреждений, разрушающих задний гипофиз (опухоли, гранулематозное воспаление, травма);
Диагностическим маркером дефицита вазопрессина является неспособность почек концентрировать мочу при увеличении внеклеточного осмотического давления (гипернатриемия). В отличие от нормальной сывороточной концентрации Na+, при дефиците минералокортикостероидов сывороточная концентрация Na+ увеличивается при нехватке воды.
Таблица 11.19 '''Причины несахарного диабета'''
*Нейрогенные (дефицит вазопрессина)
Вторичный избыток минералокортикостероид-регулирующего гормона обычно возникает на фоне таких заболеваний почек, как стеноз почечной артерии, ослабляющий способность почек адекватно реагировать на изменения системного артериального давления. При умеренном избытке минералокортикостероидов преобладает сосудосуживающее действие ангиотензина II.
Первичный избыток минералокортикостероидов обычно возникает при альдостерон-вырабатывающей аденоме или при гиперчувствительности к ангио-тензину II, ведущей к двусторонней гипертрофии гломерулярной области (идиопатический альдосте-ронизмальдостеронизм). Хирургическая резекция альдостерон-вырабатывающей аденомы часто полностью приводит давление крови в норму, но при идиопатическом альдостеронизме даже удаление обоих надпочечников гипертензию не устраняет.
'''Избыток минералокортикостероидов увеличивает внеклеточный объем Na+'''
В результате увеличения внеклеточного Na+ и косвенной стимуляции выработки вазопрессина, вызываемой избытком минералокортикостероидов, вода перемещается из внутриклеточного пространства и увеличивается объем внеклеточной жидкости. По мере роста циркулирующего объема жидкости и почечной перфузии в почках возникает натрийурез и увеличивается вывод Na+. Эффекты минералокортикостероидно-зависимой задержки Na+ и натрийуреза уравновешиваются при достаточно низком уровне увеличения объема жидкости и не прогрессируют до появления явного избытка объема жидкости (т.е. [[Отеки|отеков]]). Сывороточная концентрация Na+ остается в норме, но быстро теряется К+, что приводит к гипокалиемии.
Заболевания, снижающие почечную перфузию, сокращают циркулирующий объем жидкости в результате гипоальбуминемии или снижения сердечной деятельности, приводят к прогрессивному росту Na+ и ретенции объема жидкости, которые не корректируются реакцией натрийуреза. Это объясняет появление отеков при застойной сердечной недостаточности, циррозе печени и нефротическом синдроме. Хотя уровень минералокортикостероидов в таких случаях высокий, он обусловлен физиологической реакцией на сниженную почечную перфузию.
Основное лечение альдостерон-вырабатывающей аденомы — хирургическое, но во многих наблюдениях избытка минералокортикостероидов необходима лекарственная терапия.
Спиронолактон (см. главу 12) является стероидным минералокортикостероидом и антагонистом андрогенных рецепторов. В качестве антагониста минералокортикостероидных рецепторов в периферических канальцах он оказывает калийсбере-гающее мочегонное действие, полезное при таких состояниях вторичного избытка минералокортикостероидов, как застойная сердечная недостаточность и цирроз печени.
Низкие дозы спиронолактона для пациентов с застойной сердечной недостаточностью привели к более существенному снижению показателей смертности, чем ожидалось в связи с мочегонным эффектом препарата, что дает основания предположить и другое действие минералокортикостероидов на ткани, помимо влияния на почки в регулировании работы сердечно-сосудистой системы.
Спиронолактон также применяют при лечении гирсутизма у женщин. В отличие от других антагонистов андрогенных рецепторов, нарушающих обратную связь с гипофизом и приводящих к компенсаторному повышению уровня тестостерона, спиронолактон также подавляет синтез андрогенов.
[[Диуретики (см. главу 12) ]] — класс лекарственных препаратов, функционально противодействующих минералокортикостероидам в почечных канальцах и часто применяемых для лечения избытка минералокортикостероидов. Калийсберегающие мочегонные средства амилорид и триамтерен сокращают реабсорбцию Na+, не взаимодействуют с андрогенными рецепторами и не вызывают гипогонадных симптомов у мужчин. Тем не менее препараты могут вызывать гиперкалиемию, поэтому их необходимо применять под наблюдением врача.
Клиническая и лабораторная диагностика нарушений объема жидкости
=== Избыток вазопрессина ===
'''Избыток вазопрессина ''' — обычная причина гипокалиемии. Избыток вазопрессина может быть вызван многими причинами, в том числе вазопрессин-секретирующими опухолями, побочным действием лекарств, легочными и неврологическими заболеваниями.
Механизмы влияния этих заболеваний изучены плохо, при их наличии может высвобождаться вазопрессин, не ингибируемый низкой сывороточной осмоляльностью, в результате возникает так называемый синдром несоответствующей секреции ADH. Избыточная выработка вазопрессина ведет к задержке почками свободной жидкости. Поскольку обмен Na+ регулируется иначе, задержка жидкости приводит к гипонатриемии «разбавления».
== ЛЕКАРСТВА, ВЛИЯЮЩИЕ НА ЭНДОКРИННУЮ РЕГУЛЯЦИЮ РЕПРОДУКТИВНОЙ СИСТЕМЫ ==
Вопросы, относящиеся к мочеполовой системе как части репродуктивной системы, подробно изложены в главе 17[[Мочеполовая система]].
В отличие от других систем, которые регулируют важные физиологические функции краткосрочно, гипоталамо-гипофизарно-гонадная (ГГГ) система регулирует дифференциацию вторичных половых признаков в течение всей жизни. Для поддержания сперматогенеза, развития яйцеклеток и менструального цикла нужно краткосрочное регулирование, в то время как в периоды пубертата и менопаузы — длительное.
Выработка гипоталамусом гонадотропин-рилизинг гормона, а гипофизом — гонадотропина[[гонадотропин]]а, координируются сложными нейроэндокринными механизмами. Главный регулятор выработки полового гормона — [[лютеинизирующий гормон]], а главный гормон, стимулирующий развитие гамет, — фолликулостимулирующий гормон. Эти гормоны вырабатываются эпизодически, или «пиковым методом». Андрогены [[Андроген]]ы и [[эстрогены ]] ингибируют секрецию гонадотропина, но эти эффекты меняются во время менструального цикла.
'''Андрогены вырабатываются в гонадах и надпочечниках, а эстрогены — из предшественников андрогенов в гонадах и жировой ткани'''
Лютеинизирующий гормон и фолликулостимулирующий гормон стимулируют стероидогенез в половых железах и метаболизм надпочечниковых андрогенов в [[тестостерон ]] и эстрогены (рис. 11.20). Синтез эстрогенов и андрогенов имеет общие биосинтетические этапы с другими адренокортикальными стероидами, но глюкокортикостероиды и минералокортикостероиды не вырабатываются в половых железах, т.к. в этих тканях не хватает нужных ферментов. В норме большинство половых стероидов продуцируются в гонадах.[[Image:Ph_11_20.jpg|250px|thumb|right|Рис. 11.20]]''Рис. 11.20 Регуляция синтеза половых гормонов. Гипоталамический гонадотропин-рилизинг гормон (GnRH) стимулирует выброс лютеинизирующего гормона (LH) и фолликулостимулирующего гормона (FSH) гонадотрофами задней доли гипофиза. LH и FSH стимулируют выработку половых гормонов в гонадах. Затем андрогены надпочечников перерабатываются в более мощные андрогены в гонадах. Ферменты ароматазы преобразовывают андрогены в эстрогены как в гонадах, так и в жировой ткани. В некоторых тканях-мишенях фермент 5а-редуктаза преобразовывает тестостерон в более мощный андроген дигидротестостерон. У взрослых мужчин половые гормоны вырабатываются постоянно. У женщин гонадотропины и половые гормоны вырабатываются по более сложной схеме во время менструального цикла (см. рис. 11.24). DHEA — дегидроэпиандростерон.''
Однако при заболеваниях надпочечников выработка большого количества стероида дегидроэпиандростерона в ретикулярной зоне может привести к образованию значительного количества половых стероидов.
Эстрогены также образуются в результате активности фермента ароматазы в половых железах и адипоцитах. Ароматаза преобразовывает андрогены в эстрогены в жировой ткани и отвечает за основную выработку эстрогена в постменопаузе и более высокие уровни эстрогена у людей с ожирением.
 
Рис. 11.20 Регуляция синтеза половых гормонов. Гипоталамический гонадотропин-рилизинг гормон (GnRH) стимулирует выброс лютеинизирующего гормона (LH) и фолликулостимулирующего гормона (FSH) гонадотрофами задней доли гипофиза. LH и FSH стимулируют выработку половых гормонов в гонадах. Затем андрогены надпочечников перерабатываются в более мощные андрогены в гонадах. Ферменты ароматазы преобразовывают андрогены в эстрогены как в гонадах, так и в жировой ткани. В некоторых тканях-мишенях фермент 5а-редуктаза преобразовывает тестостерон в более мощный андроген дигидротестостерон. У взрослых мужчин половые гормоны вырабатываются постоянно. У женщин гонадотропины и половые гормоны вырабатываются по более сложной схеме во время менструального цикла (см. рис. 11.24). DHEA — дегидроэпиандростерон.
== Физиология женской репродуктивной системы ==
Яичник состоит из сферических фолликул в строме, окруженной мембраной и белочной оболочкой (рис. 11.21). Каждая фолликула содержит гамету (ооцит, яйцо, яйцеклетка). Первоначально в яичниках содержится около 7 млн яйцеклеток, но большая их часть погибает еще до рождения и в детстве, поэтому ко времени половой зрелости остается приблизительно 400 тыс. ооцитов; из них приблизительно 0,1% (т.е. около 400) будет овулировать. Самые важные гормоны яичника — половые стероиды эстрогены (прежде всего эстрадиол, а также эстрон и эстриол) и прогестерон. Их выработкой управляет система ГГН (рис. 11.22).
[[Image:Ph_11_21.jpg|250px|thumb|right|Рис. 11.21]]
''Рис. 11.21 Строение женской репродуктивной системы. Женская репродуктивная система состоит из двух яичников. Каждый яичник окружен фаллопиевыми трубами (длиной приблизительно 10 см каждая), выходящими в матку. Нижняя часть матки сужается и образует шейку, которая является мышечной структурой, содержащей секреторные железы и выходящей во влагалище. Шейка вырабатывает слизь, действующую как барьер для восходящей инфекции из влагалища в матку. Влагалище — мышечная труба из многослойного неорогове-вающего чешуйчатого эпителия. Внешние слои эпителия постоянно отмирают и формируют клеточные массы, которые используют для определения степени истощенности влагалищной слизистой оболочки, стимулирования эстрогеном и наличия инфекции или онкологического новообразования.''
[[Image:Ph_11_22.jpg|250px|thumb|right|Рис. 11.22]]
''Рис. 11.22 Гипоталамо-гипофизарно-яичниковая система. Эндокринный контроль функций яичников осуществляют гормоны, самые важные из которых — эстроген и прогестерон. Их синтезом управляет система ГГН. Нейроны в предоптической области гипоталамуса вырабатывают декапептид, называемый гона-дотропин-рилизинг гормоном (GnRH), который поступает в гипофиз. GnRH воздействует на особые рецепторы гонадотропин-секретирующих клеток гипофиза и стимулирует пульсирующую выработку фолликулостимулирующего гормона (FSH) и лютеини-зирующего гормона (LH), которые действуют на рецепторы в яичнике и стимулируют синтез гормонов и овуляцию.''
'''Менструальный цикл (период между двумя овуляциями) продолжается 24-32 дня'''
Первый день менструации начинается со сброса маточной оболочки, что занимает 3-5 дней. Этот период сопровождается фолликулярной или пролиферативной фазой менструального цикла (до середины цикла, около 14 дней), когда происходит овуляция (рис. 11.23). В фолликулярной фазе развивающиеся фолликулы вырабатывают эстрадиол, который обусловливает пролиферацию внутренней оболочки матки. Если оплодотворение не произошло, наступает лютеиновая, или секреторная, фаза, продолжающаяся также примерно 14 дней. Во время этой фазы на месте лопнувшего фолликула возникает желтое тело, вырабатывающее прогестерон.
[[Image:Ph_11_23.jpg|250px|thumb|right|Рис. 11.23 Изменения в эндометрии во время менструального цикла. Обозначены основные изменения. LH — лютеинизирующий гормон.]]
'''Лютеинизирующий гормон увеличивает выработку андрогенов и прогестерона, а фолликулостимулирующий гормон — эстрогена из андрогенов'''
Концентрация эстрогенов в крови повышается по мере созревания фолликула. Обычно половые стероиды управляют своим синтезом путем отрицательной обратной связи с гипоталамусом и гипофизом, снижая выработку LH и FSH. Этот механизм изучен недостаточно, но эффект обратной связи в ходе цикла меняется, когда высокие концентрации эстрадиола (> 200 пг/мл) усиливают выработку LH в течение 2-дневного периода. Этот подъем уровня LH (рис. 11.24):
 
Рис. 11.21 Строение женской репродуктивной системы. Женская репродуктивная система состоит из двух яичников. Каждый яичник окружен фаллопиевыми трубами (длиной приблизительно 10 см каждая), выходящими в матку. Нижняя часть матки сужается и образует шейку, которая является мышечной структурой, содержащей секреторные железы и выходящей во влагалище. Шейка вырабатывает слизь, действующую как барьер для восходящей инфекции из влагалища в матку. Влагалище — мышечная труба из многослойного неорогове-вающего чешуйчатого эпителия. Внешние слои эпителия постоянно отмирают и формируют клеточные массы, которые используют для определения степени истощенности влагалищной слизистой оболочки, стимулирования эстрогеном и наличия инфекции или онкологического новообразования.
 
Рис. 11.22 Гипоталамо-гипофизарно-яичниковая система. Эндокринный контроль функций яичников осуществляют гормоны, самые важные из которых — эстроген и прогестерон. Их синтезом управляет система ГГН. Нейроны в предоптической области гипоталамуса вырабатывают декапептид, называемый гона-дотропин-рилизинг гормоном (GnRH), который поступает в гипофиз. GnRH воздействует на особые рецепторы гонадотропин-секретирующих клеток гипофиза и стимулирует пульсирующую выработку фолликулостимулирующего гормона (FSH) и лютеини-зирующего гормона (LH), которые действуют на рецепторы в яичнике и стимулируют синтез гормонов и овуляцию.
 
Рис. 11.23 Изменения в эндометрии во время менструального цикла. Обозначены основные изменения. LH — лютеинизирующий гормон.
* уменьшает чувствительность LH-рецепторов на оболочке, таким образом подавляя синтез андрогенов и эстрогенов;
* способствует выбросу яичниковых цитокинов, активаторов профибринолизина, простагландинов и гистамина, вызывая сначала разрыв капсульной стенки, а потом сокращение окружающих ее структур, что заканчивается ее разрывом (овуляцией). Это происходит через = 36 час после стимуляции LH.
[[Image:Ph_11_24.jpg|250px|thumb|right|Рис. 11.24]]
''Рис. 11.24 Изменения концентрации гормонов во время менструального цикла. Концентрации гормонов могут сильно различаться. Во время менструации и в ранней фолликулярной фазе концентрации гормонов низкие, и поскольку есть небольшая отрицательная обратная связь, то выработка гонадотропина, особенно фолликулостимулирующего гормона (FSH), немного увеличена. FSH стимулирует фолликулы яичников к росту, созреванию и выработке эстрогенов. Затем увеличивающаяся концентрация эстрогена проявляет отрицательную обратную связь, уменьшая концентрации гонадотропина. Однако, когда концентрация эстрогенов достигает критического значения (> 200 пг/мл) за определенный отрезок времени (2 дня), отрицательная обратная связь переходит в положительную, и стимулируется резкий выброс из гипофиза лютеинизирующего гормона (LH) и FSH (в меньшей степени). Увеличенная концентрация LH уменьшает чувствительность LH-рецепторов в яичниках, таким образом подавляя синтез андрогенов и эстрогенов и приводя к быстрому снижению концентрации циркулирующих эстрогенов. Однако LH-рецепторы зернистых клеток продолжают реагировать на LH и начинают вырабатывать прогестерон.''
'''Желтое тело яичника формируется после овуляции и вырабатывает прогестерон, контролирующий состояние внутренней оболочки матки'''
При стимуляции LH зернистые клетки лопнувшего фолликула формируют желтое тело (рис. 11.25). Оно вырабатывает большие количества 17-гидроксипрогестерона, прогестерона и эстрогена. Прогестерон необходим для регуляции состояния эндометрия. Если оплодотворение не происходит, желтое тело атрофируется и регрессирует на 21-й день менструального цикла. В поздней лютеиновой фазе уменьшающиеся концентрации прогестерона вызывают отторжение эндометрия.
 
Рис. 11.24 Изменения концентрации гормонов во время менструального цикла. Концентрации гормонов могут сильно различаться. Во время менструации и в ранней фолликулярной фазе концентрации гормонов низкие, и поскольку есть небольшая отрицательная обратная связь, то выработка гонадотропина, особенно фолликулостимулирующего гормона (FSH), немного увеличена. FSH стимулирует фолликулы яичников к росту, созреванию и выработке эстрогенов. Затем увеличивающаяся концентрация эстрогена проявляет отрицательную обратную связь, уменьшая концентрации гонадотропина. Однако, когда концентрация эстрогенов достигает критического значения (> 200 пг/мл) за определенный отрезок времени (2 дня), отрицательная обратная связь переходит в положительную, и стимулируется резкий выброс из гипофиза лютеинизирующего гормона (LH) и FSH (в меньшей степени). Увеличенная концентрация LH уменьшает чувствительность LH-рецепторов в яичниках, таким образом подавляя синтез андрогенов и эстрогенов и приводя к быстрому снижению концентрации циркулирующих эстрогенов. Однако LH-рецепторы зернистых клеток продолжают реагировать на LH и начинают вырабатывать прогестерон.
После оплодотворения выработка прогестерона поддерживается повышающимися концентрациями человеческого хорионического гонадотропина. Прогестерон ингибирует менструальный цикл и, таким образом, поддерживает беременность путем:
У женщин многие заболевания связаны с эстрогенами, но лишь немногие вызваны непосредственными изменениями их синтеза. Такие заболевания, как менструальные нарушения, неоплазия половых органов, рак молочной железы и предрасположенность к аутоиммунным заболеваниям, подвержены влиянию эстрогенов, но не вызываются их избытком или недостатком. Чрезмерная секреция эстрогенов у женщин, подобно избытку тестостерона у мужчин, не сопровождается четкими признаками или симптомами.
 
Рис. 11.25 Фолликулярный цикл. Фолликулы, формирующиеся у эмбриона, состоят из яйца, окруженного двумя или тремя уровнями ячеистых клеток. Эти фолликулы называют зачаточными фолликулами. Каждый день некоторые из этих зачаточных фолликул созревают и начинают формировать теку, которая становится васкуляризированной. Это преантральная стадия, дальнейшее созревание контролируют фолликулостимулирующий гормон (FSH) и лютеинизирующий гормон. Если уровни FSH ниже критической концентрации, преантральные фолликулы погибают. Этот цикл повторяется в течение всей жизни женщины. В ранней фолликулярной фазе уровни FSH выше критической концентрации (см. рис. 11.24), и преантральные фолликулы созревают и переходят в антральную стадию. Но только одна фолликула достигает зрелости и готова овулировать — доминирующая, или граафова, фолликула (фаза выбора). Она является источником 90% яичниковых эстрогенных гормонов. Остальные антральные фолликулы погибают.
Терапию эстрогенами применяют для:
* подавления женской репродуктивной функции, т.е. в целях контрацепции;
* замещения отсутствующих гормонов, коррекции нарушений секреции гормонов, облегчения зачатия или предотвращения аменореи ([[Нарушение менструального цикла|отсутствие менструации]]).
=== Стероидные противозачаточные средства ===
=== Комбинированные оральные контрацептивы ===
Комбинированные [[Оральные контрацептивы и спорт|оральные контрацептивы ]] (КОК) включают гестагены второго и третьего поколения, комбинированные с этинилэстрадиолом (табл. 11.20). Комбинация эстрогена и гестагена оказывает следующие эффекты:
* гестагены подавляют менструальный цикл, воздействуя на гипоталамус и гипофиз;
=== Практика применения комбинированных оральных контрацептивов ===
[[Image:Ph_11_26.jpg|250px|thumb|right|Рис. 11.26 Риск смерти у женщин, принимающих таблетки, по сравнению с другими рисками.]]
На рис. 11.26 показано, что относительный риск побочных эффектов стероидных контрацептивов (по сравнению с другими рисками) небольшой и меньше, чем риск наступления беременности. Побочный эффект этих препаратов связан со следующим:
*У большинства женщин происходит быстрое восстановление фертильности после прекращения приема таблеток
 
Рис. 11.26 Риск смерти у женщин, принимающих таблетки, по сравнению с другими рисками.
=== Контрацептивы, содержащие только гестагены (минипили) ===
Если гестаген вводят в последние 10 дней 28-дневного цикла, начинается кровотечение, поэтому эти два стероида лучше принимать вместе непрерывно. Андрогены оказывают благоприятный эффект на настроение и либидо у женщин в менопаузе, но неэффективны в противодействии влиянию эстрогенов на матку. Комбинированная терапия эстрогеном и тестостероном — наиболее адекватна у женщин после гистерэктомии. Однако результаты крупномасштабных исследований показали, что ЗГТ связана с ростом смертности, что способствовало формированию негативного отношения к ЗГТ и поиску альтернативной терапии.
'''НЕГОРМОНАЛЬНЫЕ МЕТОДЫ ЛЕЧЕНИЯ'''. Такие методы предусматривают терапию менопаузальных признаков, но не уменьшают мочеполовые симптомы и не предотвращают риск заболеваний сердечнососудистой системы. Клонидин (а2-агонист адренорецепторов) и вералиприд (антагонист дофамина) уменьшают приливы, пропранолол (антагонист β-адренорецепторов) помогает при треморе. Лечение остеопороза описано в главе 15.
== Нарушение выработки половых гормонов у женщин в период предменопаузы ==
[[Image:Ph_11_27.jpg|250px|thumb|right|Рис. 11.27 Причины, симптомы и локализация репродуктивных нарушений. FSH — фолликулостимулирующий гормон; GnRH — гонадотропин-рилизинг гормон; LH — лютеинизирующий гормон.]]
Нарушения в работе женской репродуктивной системы иллюстрирует рис. 11.27.
*человеческий менопаузальный гонадотропин из постменопаузальной мочи, который имеет биологическую активность, равную FSH и LH. Это биологический экстракт, поэтому его трудно стандартизировать;
 
Рис. 11.27 Причины, симптомы и локализация репродуктивных нарушений. FSH — фолликулостимулирующий гормон; GnRH — гонадотропин-рилизинг гормон; LH — лютеинизирующий гормон.
* метродин, очищенным препарат из постменопаузальной мочи, содержит 94°/о FSH и не имеет эффектов LH;
Во избежание многоплодной беременности вводят низкие дозы FSH в течение 14 дней и ежедневно проводят ультразвуковую диагностику для наблюдения за ростом фолликул. Дозу увеличивают только при отсутствии созревания яйцеклеток. Можно применить такую схему терапии: в начале лечения — высокая доза FSH с пошаговым ее уменьшением как при естественном цикле выработки FSH. Другой режим заключается в подавлении эндогенной схемы выработки гонадотропина, в том числе аналогом GnRH. Этот метод дает возможность более точно контролировать дозу гонадотропина и распределения его по времени и риск уменьшает невынашивания плода.
'''ГОНАДОТРОПИН-РИЛИЗИНГ ГОРМОН И АНАЛОГИ ЕГО АГОНИСТА'''. Гонадотропин-рилизинг гормон — декапептид. Его аналоги модифицированы заместителями в 6 и 10 аминокислотах для повышения эффективности и продолжительности его действия. Используемые в настоящее время препараты — гонадорелин (собственно GnRH), бусерелин, гозерелин и лейпрорелин. Постоянное применение агонистов GnRH может, в конечном счете, подавить синтез гипофизарных гонадотропинов после периода стимуляции. Высокие уровни GnRH уменьшают чувствительность GnRH-рецепторов к гонадотро-памгонадотропам, что ведет к гипогонадальному гипопитуарному состоянию. Ранее были предприняты попытки использовать этот эффект для контрацепции, вводя аналоги GnRH в форме назального спрея, аэрозоля и капель, однако было выявлено, что эти препараты могут вызвать выраженную эстрогенную недостаточность и, следовательно, привести к менопаузальным симптомам.
'''Прием рекомбинантного GnRH гонадорелина в пульсирующем режиме при дисфункции гипоталамуса'''
* купирования вирилизирующего действия андрогенов.
Аменорея, олигоменорея и дисфункциональное маточное кровотечение лечат гестагенами, чтобы подавить действие эстрогенов. Овуляцию вызывают кломифеном или другими антиэстрогенами (см. далее). Если кломифен не приводит к овуляции, показаны препараты гонадотропина, или интермиттирующий прием аналогов GnRH (см. ранее).
'''Кломифен применяют для лечения бесплодия у пациенток с синдромом поликистозных яичников'''
Реакцией на уменьшение эстрогенов могут быть разнообразные нарушения у женщин: неоплазмы молочной железы и матки, эндометриоз, дисфункциональное маточное кровотечение и эстроген-зависимые иммунологические синдромы. Один из способов лечения — применение антагонистов эстрогеновых рецепторов, но модуляторы выработки гипофизарного FSH и LH также уменьшают синтез эстрогенов (рис. 11.28).
[[Image:Ph_11_28.jpg|250px|thumb|right|Рис. 11.28]]
''Рис. 11.28 Модуляция системы гонадотропина. Лекарственные средства изменяют функцию гипоталамо-гипофизарно-гонадной системы. Агонисты рецептора гонадотропина (лейпролид, нафарелин, гистрелин) десенсибилизируют гонадотрофный ответ, приводя к уменьшению концентрации лютеинизирующего гормона (LH) и фолликулостимулирующего гормона (FSH). Даназол имитирует подавление обратной связи эндогенными андрогенами и уменьшает выработку гонадотропина без выраженного андрогенного побочного действия. Антагонисты рецепторов андрогенов и эстрогенов прерывают подавление обратной связи выработки гонадотропина половыми стероидами. Повышение уровня гонадотропинов антагонистом эстрогенов кломифеном стимулирует яичниковый фолликулогенез при лечении бесплодия, тогда как рефлекторное увеличение LH антагонистом андрогенных рецепторов флутамидом может стимулировать синтез тестостерона и подавлять антиандрогенное действие. Флутамид можно комбинировать с агонистами гонадотропин-рилизинг гормона (GnRH) при лечении рака предстательной железы.''
Даназол — слабый андроген, подавляющий выработку гонадотропина, что ведет к последующему сокращению синтеза эстрогенов. Хорошо себя зарекомендовали агонисты GnRH лейпролид, нафарелин и гистрелин. Эти препараты оказывают большее влияние на GnRH-рецепторы гипофиза, чем эндогенный агонист GnRH. После короткой стимуляции они уменьшают чувствительность GnRH-рецептора и, следовательно, выработку гонадотропина. Эти препараты вводят парентерально, и они вызывают побочные эффекты менопаузального типа: вазомоторные симптомы, потеря костной массы, атрофия мочеполовых органов.
Гирсутизм и акне часто встречаются у женщин, но не всегда связаны с избытком андрогенов. Гирсутизм — распространенный признак СПЯ. Андрогенное действие на сальную железу и волосяной фолликул вызывает преобразование пушковых волос в более жесткие и увеличивает рост волос. Устранение андрогенной стимуляции не корректирует этот процесс полностью, но предотвращает дальнейшее прогрессирование.
 
Рис. 11.28 Модуляция системы гонадотропина. Лекарственные средства изменяют функцию гипоталамо-гипофизарно-гонадной системы. Агонисты рецептора гонадотропина (лейпролид, нафарелин, гистрелин) десенсибилизируют гонадотрофный ответ, приводя к уменьшению концентрации лютеинизирующего гормона (LH) и фолликулостимулирующего гормона (FSH). Даназол имитирует подавление обратной связи эндогенными андрогенами и уменьшает выработку гонадотропина без выраженного андрогенного побочного действия. Антагонисты рецепторов андрогенов и эстрогенов прерывают подавление обратной связи выработки гонадотропина половыми стероидами. Повышение уровня гонадотропинов антагонистом эстрогенов кломифеном стимулирует яичниковый фолликулогенез при лечении бесплодия, тогда как рефлекторное увеличение LH антагонистом андрогенных рецепторов флутамидом может стимулировать синтез тестостерона и подавлять антиандрогенное действие. Флутамид можно комбинировать с агонистами гонадотропин-рилизинг гормона (GnRH) при лечении рака предстательной железы.
Стероидные антиандрогены:
Орально активные андрогены метилтестостерон и флуоксиместерон в андроген-заместительной терапии обычно не применяют, но ими часто злоупотребляют лица, занимающиеся бодибилдингом. Другие орально активные андрогенные стероиды (тестолактон, оксандролон, станозолон, оксиметолон) и препараты для в/м введения (нандролон) в клинической практике используют при раке и рефрактерной анемии. В течение всего периода терапии андрогенами необходимо наблюдение врача для контроля за печенью и другими разнообразными побочными эффектами (табл. 11.22).
 
Антиандрогенную терапию (рис. 11.29) применяют для лечения заболеваний простаты у мужчин:
Таблица 11.21 Агонисты андрогенов
<p>Приапизм, гипертрофия простаты, рак предстательной железы</p></td></tr>
</table>
[[Image:Ph_11_29.jpg|250px|thumb|right|Рис. 11.29]]
''Рис. 11.29 Антиандрогенная терапия. Эндогенный тестостерон и дигидротестостерон связывают и димеризируют цитозольные андрогенные рецепторы (AR), перемещают их к ядру и регулируют генную транскрипцию. Дигидротестостерон синтезируется из тестостерона в тканях-мишенях, которые содержат фермент 5а-редуктазу. Антагонисты андрогенов конкурентно подавляют связывание андрогенов с AR. Стероидный антиандроген спиронолактон также может подавлять синтез тестостерона. Ингибиторы 5а-редуктазы избирательно уменьшают синтез дигидротестостерона в тканях-мишенях. CRE — элемент ответа на глюкокортикостероиды.''
РисАнтиандрогенную терапию (рис. 11.29 Антиандрогенная терапия. Эндогенный тестостерон и дигидротестостерон связывают и димеризируют цитозольные андрогенные рецепторы (AR), перемещают их к ядру и регулируют генную транскрипцию. Дигидротестостерон синтезируется из тестостерона в тканях-мишенях, которые содержат фермент 5а-редуктазу. Антагонисты андрогенов конкурентно подавляют связывание андрогенов с AR. Стероидный антиандроген спиронолактон также может подавлять синтез тестостерона. Ингибиторы 5а-редуктазы избирательно уменьшают синтез дигидротестостерона в тканях-мишенях. CRE — элемент ответа на глюкокортикостероиды.применяют для лечения заболеваний простаты у мужчин:
*нестероидные антагонисты андрогенов (флутамид, нитуламид) действуют селективно на рецепторы тестостерона и не действуют на другие стероидные рецепторы. Использование этих препаратов способствует повышенной выработке LH и синтезу тестостерона, что может привести к нерезультативному лечению;

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция