Открыть главное меню

SportWiki энциклопедия β

Изменения

Препараты для лечения психозов (нейролептики)

5433 байта добавлено, 10 лет назад
Нейролептики
Имеются и другие наблюдения, свидетельствующие в пользу дофаминовой гипотезы. Так, небольшие дозы типичных нейролептиков блокируют поведенческие и нейроэндокринные эффекты дофаминергических препаратов при внутримозговом введении или системном назначении последних. Например, апоморфин, под действием которого крысы начинают стереотипно грызть различные предметы, теряет свое действие на фоне введения нейролептиков. Многие типичные нейролептики (за исключением бутирофенонов, их аналогов и замещенных бензамидов) блокируют действие дофаминергических средств на аденилатциклазу, сопряженную с D1 -рецепторами, в переднем мозге (рис. 20.1). Однако атипичные нейролептики, такие, как клозапин и кветиапин, препятствуют действию дофаминергических препаратов лишь в незначительной степени (Campbell et al., 1991). Ранние эффекты типичных нейролептиков включают блокаду D2-рецепторов и стимуляцию электрической и метаболической активности дофаминергических нейронов, но затем эти реакции сменяются снижением активности, особенно в базальных ядрах (Bunney et al., 1987). Динамика этих адаптивных процессов коррелирует с постепенным развитием гипокинезии на фоне лечения нейролептиками (Tarsy et al., 2001).
[[Image:Gud_20_1.jpg|300px|thumb|right|Рисунок 20.1.Механизмы действия нейролептиков и лития.]]
 
'''''Описание к рис. 20.1.''' Механизмы действия нейролептиков и лития. В утолщениях, расположенных по ходу конечных разветвлений дофами-| нергических волокон, идущих из среднего мозга в передний, тирозин под действием тирозингидроксилазы окисляется до ДОФА. I Эго лимитирующая реакция синтеза катехоламинов. Затем ДОФА декарбоксилируется декарбоксилазой ароматических L-амино-: кислот с образованием дофамина, который запасается в пузырьках. Деполяризация в присутствии ионов Са2+ приводит к высвобо-j вдению (экзоцитозу) дофамина; этот процесс подавляется литием. Выделившийся дофамин взаимодействует с постсинаптиче-скими D,- и Dj-рецепторами (и со структурно сходными, но менее распространенными другими Di-подобными и Б2-подобными рецепторами), а также с пресинаптическими D2- и 03-ауторецепторами. Инактивация дофамина осуществляется в основном путем его активного транспорта в пресинаптическое волокно (обратного захвата) с последующим дезаминированием митохондри-; альной МАО; этот активный транспорт подавляется многими психостимуляторами. Стимуляция постсинаптических Эгрецепторов приводит к опосредованной белками G, активации аденилатциклазы; последняя превращает АТФ в цАМФ. Напротив, стимуляция D2-рецепторов приводит к опосредованному белками G| ингибированию аденилатциклазы. Кроме того, активация D2-pецепторов сопровождается открыванием связанных с ними калиевых каналов, подавлением медленного кальциевого тока и стимуляцией фосфолипазы С (возможно, посредством (βу-субъединиц, высвобождающихся при активации Gi-белков; см. гл. 2). Фосфо-липаза С превращает ФИФ2 в ИФ) и ДАГ; это, в свою очередь, оказывает вторичный эффект на активность внутриклеточного кальция и протеинкиназ. Литий подавляет инозитолмонофосфатазу, превращающую инозитолфосфат в инозитол. Как литий, так и мльпроевая кислота могут влиять на содержание и функцию G-белков, на протеинкиназы и некоторые клеточные (в том числе внутриядерные) регуляторные факторы. Активация D2-ауторецепторов приводит к подавлению синтеза дофамина, снижению ; фосфорилирования тирозингидроксилазы, а также подавлению высвобождения дофамина (возможно, путем влияния на кальциевые и калиевые токи). Напротив, пресинаптические пуриновые А2-рецепторы активируют аденилатциклазу и, посредством I цАМФ, стимулируют тирозингидроксилазу. Почти все нейролептики блокируют как постсинаптические, так и пресинаптические Dj-рецепторы; некоторые блокируют также Di-рецепторы (табл. 20.2). В начале лечения нейролептиками дофаминергические нейроны активируются и начинают высвобождать больше дофамина. Затем, на фоне продолжительного приема препаратов, про-! дукция и высвобождение дофамина снижаются, но блокада дофаминовых рецепторов сохраняется. АЦ — аденилатциклаза, ДА — дофамин, И — инозитол, ИФ — инозитолфосфат, ИФ2 — инозитолдифосфат, ФЛС — фосфолипаза С, ЭПР — эндоплазматиче-I скийретикулум.''
 
Для более подробного изучения механизма действия нейролептиков изучалось их связывание с различными типами дофаминовых рецепторов (табл. 20.2 и рис. 20.1, а также Civelli et al., 1993; Baldessarini and Tarazi, 1996; Neve and Neve, 1997). Клиническая эффективность большинства нейролептиков коррелирует с их сродством к 02-рецепторам in vitro (гл. 12). Эта взаимосвязь несколько затушевывается тем, что разные нейролептики в разной степени накапливаются в мозговой ткани (Tsune-izumi et al., 1992; Cohen et al., 1992). Тем не менее несомненно, почти все эффективные нейролептики (важные исключения — клозапин и кветиапин) имеют высокое сродство к D2-рецепторам. Нейролептики, активные в отношении D1-рецепторов(это, в первую очередь, тиоксантены и фенотиазины), одновременно блокируют D2- и другие D2-подобные рецепторы (Sokoloff et al., 1990; Van Tol et al., 1991; Baldessarini and Tarazi, 1996; Tarazi and Baldessarini, 1999). Бутирофеноны и их аналоги (например, галоперидол, пимозид, N-метилспиперон), так же как и замещенные бензамиды (например, сульпирид, этиклоприд, немонаприд, раклоприд, ремоксиприд), — относительно избирательные блокаторы D2- и D3-рецепторов, обладающие различным сродством к D4-рецепторам. Физиологические и клинические последствия избирательной блокады D1 и D5-рецепторов не известны. Экспериментальные дибензазепины, обладающие такими свойствами (например, SCH-23390 и SCH-39166, или экопипам), по-видимому, оказывают лишь слабое антипсихотическое действие (Daly and Waddington, 1992; Kebabianetal., 1997).
[[Image:Gud_tab_20_2.jpg|300px|thumb|right|Таблица 20.2. Активность нейролептиков в отношении разных рецепторов ]]
Атипичные нейролептики, такие, как клозапин и другие дибензазепины, редко вызывающие экстрапирамидные побочные эффекты, имеют низкое сродство к D2-рецепторам. Вместе с тем они, как и многие другие нейролептики, активно блокируют а1адренорецепторы (Baldessarini et al., 1992). С одной стороны, это действие может вносить вклад в развитие седативного и гипотензивного эффектов, с другой — отвечать за некоторые полезные психотропные свойства. Следует отметить, однако, что психотропные свойства центральных [[Альфа-адреноблокаторы|а-адреноблокаторов]] изучены плохо. Многие нейролептики, в первую очередь клозапин, оланзапин, кветиапин, рисперидон, а также некоторые экспериментальные препараты блокируют 5-НТ2А-рецепторы (Chouinardetal., 1993; Leysenetal., 1994; гл. 11). Именно комбинация умеренного сродства к различным типам центральных рецепторов (включая М-холинорецепторы и Н1-рецепторы), вероятно, определяет уникальные фармакологические свойства атипичного нейролептика клозапина (Baldessarini and Frankenburg, 1991). Клозапин обладает также умеренной избирательностью в отношении D4-рецепторов (по сравнению с остальными подтипами дофаминовых рецепторов). Плотность этих рецепторов, локализующихся в основном в коре головного мозга и лимбической системе, повышается при длительном приеме уозапина и других нейролептиков, как типичных, так и атипичных. Возможно, блокада этих рецепторов вносит вклад в антипсихотическое действие. Вместе с тем показано, что избирательные блокаторы D4-рецепторов, равно как и смешанные блокаторы D4- и 5-НТ2А-рецепторов, при лечении психозов неэффективны (Baldessarini, 1997; Kramer et al., 1997; Tarazi and Baldessarini, 1999; Truffinet et al., 1999).
Многие данные, полученные для дофаминергической системы базальных ядер, пытались перенести на соответствующие мезолимбические и мезокортикальные системы. Ряд важных эффектов нейролептиков, включая связывание с дофаминовыми рецепторами, в базальных ядрах и лимбической системе сходны. Вместе с тем экстрапирамидный и антипсихотический компоненты действия нейролептиков во многом различаются. Например, некоторые острые экстрапирамидные эффекты нейролептиков ослабевают или полностью исчезают со временем (либо при назначении М-холиноблокаторов); антипсихотическое же действие этих препаратов не меняется. Дофаминергические системы разных отделов переднего мозга различаются как в функциональном отношении, так и по адаптивным реакциям, развивающимся после введения препаратов (Bunney et al., 1987; Moore, 1987; Sulserand Robinson, 1978; Wolf and Roth, 1987). Так, М-холиноблокаторы подавляют вызванное введением нейролептиков компенсаторное усиление обмена дофамина только в базальных ядрах, но не в богатых дофаминергическими окончаниями областях лимбической системы. Более того, толерантность к усилению обмена дофамина развивается в лимбической системе в гораздо меньшей степени, чем в базальных ядрах (Carlsson, 1990).
 
Таблица 20.2. Активность нейролептиков в отношении разных рецепторов
'''Связывание нейролептиков с основными типами рецепторов головного мозга человека in vivo'''. Степень связывания нейролептиков с дофаминовыми, а также некоторыми другими рецепторами головного мозга может быть оценена in vivo с помощью позитронно-эмиссионной томографии. Этот метод не только подтверждает результаты лабораторных проб, оценивающих связывание нейролептиков с рецепторами (табл. 20.2), но и в известной степени позволяет предсказать клиническую эффективность, терапевтические дозы и риск экстрапирамидных побочных эффектов тех или иных препаратов — даже в отсутствие законченных клинических испытаний (Farde et al., 1995; Waddin-gton and Casey, 2000). Так, связывание более чем с 75% D2- и других D2-подобных рецепторов в базальных ядрах ассоциируется с высоким риском острых экстрапирамидных побочных эффектов и часто наблюдается при введении терапевтических доз типичных нейролептиков (Farde et al., 1995). Напротив, клозапин в терапевтических дозах обычно связывается лишь с 40— 50% 02-рецепторов, но одновременно — с 70—90% корковых 5-НТ2-рецепторов (Kapur et al., 1999; Nordstrom et al., 1995).
9 печени (и, возможно, в кишечнике) при первом прохожие-щи; в результате сывороточная концентрация препарата начинает определять:я уже спустя 15—30 мин. При переходе от приема внутрь к парентеральному введению биодоступность хлорпромазина может увеличиваться десятикратно, однако дозы обычно уменьшают лишь в 3—4 раза. Всасывание хлорпромази-и в ЖКТ может непредсказуемо меняться в зависимости от приема пиши и, видимо, снижается под действием антацидов. Одновременное назначение антипаркинсонических М-холи-воблокаторов, вероятно, существенно не влияет на всасывание нейролептиков (Simpson et al., 1980). Хлорпромазин и другие нейролептики легко связываются с клеточными мембранами и белками плазмы. Обычно с альбумином связывается более 85% препарата. Концентрация некоторых нейролептиков (например, галоперидола) в головном мозге может быть в 10 раз выше, тем в крови (Tsuneizumi et al., 1992), а их объем распределения достигает 20 л/кг.
[[Image:Gud_tab_20_3.jpg|300px|thumb|right|Таблица 20.3. Т<sub>1/2</sub> нейролептиков ]]
Снижение сывороточной концентрации хлорпромазина включает две фазы: быструю фазу распределения (Т1//2 около 2 ч) и более медленную фазу выведения (Т1/2 около 30 ч), причем их длительность в разных исследованиях широко различается. Тщ хлорпромазина для головного мозга не известен, но может быть определен в будущем с помощью позитронно-эмиссионной томографии (Sedvall, 1992). Приблизительные Т1/2 основных нейролептиков приведены в табл. 20.3.
Попытки связать сывороточную концентрацию хлорпромазина или его метаболитов с клиническим эффектом не увенчались успехом (Baldessarini et al., 1988; Cooper et al., 1976). Было обнаружено, что у разных больных сывороточные концентрации хлорпромазина могут значительно (по крайней мере десятикратно) различаться. Хотя, по-видимому, сывороточная концентрация ниже 30 нг/мл недостаточна для получения нужного антипсихотического эффекта, а уровни свыше 750 нг/мл токсичны (Rivera-Calimlim and Hershey, 1984), оптимальный в клиническом отношении диапазон концентраций хлорпромазина до сих пор не определен.
У человека в существенных концентрациях обнаруживаются по крайней мере 10—12 метаболитов хлорпромазина (Morselli, 1977). Количественно из них наиболее значимы норг-хлорпро-мазин (лишенный двух метальных групп), хлорфенотиазин (лишенный всей боковой цепи), метокси- и гидроксилированные производные, а также глюкурониды гидроксилированных производных. В моче преобладают 7-гидроксилированные и N-де-алкилированные (нор^) метаболиты и их глюкурониды. Хлор- Медикаментозное лечение психозов и мании 393 промазин Хлорпромазин и другие фенотиазииы метабодизируются в основном изоферментом IID6 автохрома Р450.
По фармакокинетике и метаболизму тиоридазин и фгорфе-назин сходны с хлор промази ном. однако выраженное М-холи-ноблокирующее действие тиоридазина на кишечник может влиять на всасывание препарата. Основные метаболиты тиорида-зина и фторфеназина включают гидроксилированные по кольцевым структурам, N-деметилированные и S-окисленные соединения (Neumeyerand Booth, 2001). Сывороточная концентрация тиоридазина может бьлъ довольно высокой (сотни нг/мл). видимо, за счет его относительно выраженной гидрофильно-сти. Значительная часть тиоридазина превращается в активный метаболит мезоридазин, использующийся в качестве отдельного препарата и, вероятно, вносящий существенный вклад в антипсихотическое действие тиоридазина.
Метаболизм тиоксантенов сходен с метаболизмом фенотиазинов, однако тиоксантекы часто образуют сульфоксиды и редко — соединения, гидроксилированные по кольцевым структурам. Пиперазиновые фенотиазииы и тиоксантены метаболизи-руются примерно так же, как и хлорпромазин, оанако у них видоизменяется и само пиперазиновое кольцо.
Выведение из крови галоперидола и родственных ему соединений не описывается одной экспоненциальной функцией. Их Т1/2 увеличивается со временем, причем конечный Тщ очень велик, он составляет примерно 1 нед (Cohen et al., 1992). Галоперидол и другие бутирофеноны метабодизируются в основном путем N-деалкилирования; образующиеся в результате неактивные соединения могут связываться с глюкуроновой кислотой. Почти все метаболиты галоперидола биологически неактивны. Возможно, исключение составляет гидроксилированное производное, образующееся путем восстановления кето-группы; это соединение может быть вновь окислено с образованием галоперидола (Korpi et al., 1983). Другое производное галоперидола, возможно, обладающее нейротоксичностью, — замещенный фенилпиперидин, химически сходный с вызывающим паркинсонизм 1-метил-4-фенил-1,2,3,6-тетрагидропиридином (МФТП). При посмертных исследованиях в мозговой ткани лиц, принимавших галоперидол, были обнаружены на-     номолярные наномолярные концентрации этого вещества (Eyles et al., 1997; CastagnoJi et aJ., 1999). В клинической практике сывороточная концентрация галоперидола обычно составляет 5—20 нг/мл, что, согласно данным позитронно-эмиссионной томографии, соответствует связыванию 80—90% D2-рецепторов в базальных ядрах (Baldessarini et al., 1988; Wolkin et al., 1989). Как правило, максимальная сывороточная концентрация клозапина (100—770 нг/мл) достигается спустя 2,5 ч после однократного приема внутрь 200 мг препарата. Обычные сывороточные концентрации клозапина в клинической практике — около 300—500 нг/мл. Клозапин преимущественно метаболизируется изоферментом IIIA4 цитохрома Р450 путем деметилирования, гидроксилирования и N-окисления с образованием неактивных производных, которые затем выводятся с калом и мочой.
Как правило, максимальная сывороточная концентрация клозапина (100—770 нг/мл) достигается спустя 2,5 ч после однократного приема внутрь 200 мг препарата. Обычные сывороточные концентрации клозапина в клинической практике — около 300—500 нг/мл. Клозапин преимущественно метаболизируется изоферментом IIIA4 цитохрома Р450 путем деметилирования, гидроксилирования и N-окисления с образованием неактивных производных, которые затем выводятся с калом и мочой. Т1/2 клозапина изменяется в зависимости от дозы и частоты приема, в среднем составляя 12 ч (табл. 20.3).
Рисперидон хорошо всасывается. Он метаболизируется в печени, преимущественно изоферментом IID6 цитохрома Р450 с образованием основного метаболита — 9-гидроксирисперидона. Поскольку это соединение и сам рисперидон примерно одинаково активны, клиническая эффективность препарата отражает действие обоих веществ. После приема внутрь максимальные сывороточные концентрации рисперидона и 9-гидроксирисперидона достигаются спустя 1 и 3 ч соответственно. Средний T1/2 обоих соединений составляет примерно 22 ч (табл. 20.3).

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция