Открыть главное меню

SportWiki энциклопедия β

Изменения

BCAA: научный обзор

41 553 байта убрано, 4 года назад
Нет описания правки
Суммарно, 6 аминокислот принимает участие в образовании энергии в мышечной ткани: аланин, аспартат, глутамат и три ВСАА (S.Sowers, 2009), но роль ВСАА наиболее велика. Мышечная ткань содержит 60% специфических ферментов, необходимых для окисления аминокислот с целью получения энергии, особенно ВСАА. В процессе тренировок организм использует ВСАА как источник энергии. Чем интенсивнее и продолжительнее нагрузки, тем в большей мерее используются ВСАА. Установлено, что от 3% до 18% всей рабочей энергии обеспечивают ВСАА, но эта доля может значительно меняться в зависимости от характера тренировочной нагрузки. Особенно высока потребность в лейцине. Доля свободного (легко доступного для получения энергии) лейцина в общем пуле свободных аминокислот в 25 раз выше других. Мышц это касается особенно, поскольку пул свободных аминокислот в скелетных мышцах – 75%. ВСАА также могут конвертироваться в мышцах в L-аланин или L-глутамин. Две последних аминокислоты в процессе гликонеогенеза в печени могут превращаться в глюкозу. Лейцин также непосредственно стимулирует синтез протеинов за счет своей сигнальной роли (увеличивает поступление аминокислот внутрь клеток). BCAA при приеме в виде свободных аминокислот разделяется на фракцию, идущую в печень и кишечник, а также фракцию, поступающую прямо в кровоток. Пищевые добавки ВСАА в свободной форме быстро повышают концентрацию этих незаменимых аминокислот в плазме крови. Этот факт надо помнить, когда спортивный врач рассчитывает время, дозу и форму подачи ВСАА в организм с определенной тренировочной задачей: ВСАА в связанной форме (в составе диеты или в составе WP) обеспечит относительно медленное, но длительное поступление ВСАА в мышцы; ВСАА в чистом виде – быстрое, но кратковременное анаболическое действие. Роль этого фактора становится особенно важной при снижении запасов гликогена в мышцах и/или при ограничении поступления углеводов в организм в целом (например, низкоуглеводная диета). Пищевые добавки BCAA эффективны как при приеме до, так и после тренировок. Хотя роли лейцина отводится ведущее место в этих процессах, большинство экспертов считает прием данной аминокислоты в составе комплекса ВСАА более эффективным.
== Клинические исследования эргогенных свойств ВСАА и влияния на восстановление после физических нагрузок == Суммарные данные исследования эргогенных свойств ВСАА (или лейцина, в отдельности) представлены в таблице 4.  '''Таблица 4. Клинические исследования ВСАА в спортивной медицине''' {| class="wikitable"|-! Авторы !! Условия исследования !! Полученные результаты и выводы |-| rowspan="1" colspan="3" | ''Мышечная сила и мощность движений''|-| Blomstrand и соавт., 1991a || Марафон по пересеченной местности 30 км, оценка физической формы после бега. 193 бегуна, ВСАА 16 г. || Улучшение показателей после бега, результатов бега у «медленных» бегунов под влиянием ВСАА.|-| Blomstrand и соавт., 1991b || 6 женщин – игроков в [[футбол]]. Перекрестное исследование. 7,5 г ВСАА в 6% р-ре углеводов или просто 6% углеводы. Футбольный матч с оценкой физического состояния после матча. || ВСАА+ углеводы улучшают физические показатели после матча по сравнению с углеводами отдельно.|-| Carli и соавт., 1992 || Исследование влияния {ВСАА на эндокринный ответ 14 бегунов на длинные дистанции (1 час): [[Адренокортикотропный гормон|АКТГ]], [[гормон роста]], [[пролактин]], [[кортизол]], [[тестостерон]]. || ВСАА усиливают выделение гормона роста и тестостерона, оказывая эргогенное действие|-| Madsen и соавт., 1996 || 9 тренированных мужчин-велосипедистов, перекрестное исследование, 18 г ВСАА/день. Дистанция 100 км. || Нет положительного результата|-| Koopman и соавт., 2005 || 45-минутный нагрузочный цикл у мужчин. Три группы: углеводы; углеводы+протеин; углеводы+протеин+лейцин. Оценка физических показателей. || Лейцин усиливает эффект совместного приема протеинов и углеводов (увеличение показателей на 10% по сравнению с углеводы+протеин и на 30% по сравнению только с углеводами.|-| Norton , Layman, 2006 || Исследование биохимических сдвигов в скелетных мышцах под влиянием тренировок, влияние лейцина || Лейцин усиливает синтез белка и активность ферментных систем, отвечающих за него. Это может лежать в основе эргогенного действия лейцина и ВСАА.|-| Tipton и соавт., 2009 || Исследование баланса белка при приеме протеина (16,6 г) и лейцина (3,4 г) на показатели мышц ноги в условиях силовой нагрузки у тренированных лиц || Повышение показателей мышечной силы.|-| Dudgeon и соавт., 2016 || Рандомизированное одиночное-слепое исследование в группе 17 атлетов. Силовые тренировки. Группы: ВСАА и углеводы (УГ) 14 г/день, 8 недель, гипокалорическая диета. || ВСАА: потеря ЖМ и поддержание ТМТ. Углеводы: потеря ТМТ и МТ (-1 кг и -2,3 кг). Увеличение МС в ВСАА, без изменения или снижение в группе с УГ. ВСАА у тренированных лиц обладает эргогенным эффектом при снижении ЖМ на низкокалорийной диете.|-| rowspan="1" colspan="3" | ''Выносливость и усталость''|-| Blomstrand и соавт., 1997 || 7 тренированных мужчин-велосипедистов. Перекрестное исследование. ВСАА 90 мг/кг (около 6,5 г). Велотренажер 60 мин при 70% VO2макс. || Снижение показателей в группе ВСАА по шкале воспринимаемого напряжения Борга» (RPE), сохранение когнитивных функций.|-| Mittleman и соавт., 1998 || 13 среднего уровня тренированности мужчин и женщин, перекрестное исследование. ВСАА в день 9,4 г у женщин и 15,8 г у мужчин. Велотренажер до усталости при температуре выше 34 гр.С. при 40% VO2 макс. || Увеличение времени до истощения (137 мин контроль, 153 – ВСАА – на 11,6%). Увеличение в плазме ВСАА и снижение триптофана. Одинаково для мужчин и женщин.|-| Davis и соавт., 1999 || 8 активных мужчин и женщин. Перекрестное исследование. ВСАА 7 г + углеводы; плацебо – углеводы. Бег до истощения. || Одинаковый положительный эффект в обеих группах.|-| Watson и соавт., 2004 || 8 мужчин в условиях высокой температуры окружающей среды. Велотренажер, нагрузка до истощения при 50% VO2. ВСАА до нагрузки. || ВСАА не изменяют показатели физической готовности при повышенных внешних температурах.|-| Howatson и соавт., 2012 || 12 мужчин, показатели прыжковой активности, маркеры мышечных повреждений. ВСАА до и после нагрузки в течение 12 дней в разовой дозе 10 г. || ВСАА снижает повреждения, ускоряет восстановление и усиливает физическую готовность.|}''Примечания:'' ЖМ – жировая масса; ТМТ – тощая масса тела; МТ – масса тела; МС – мышечная сила; УГ - углеводы Как видно из таблицы, в большинстве работ ВСАА улучшали показатели способности тренирующихся лиц к выполнению аэробных заданий.  В соответствии с позицией ISSN (R.B.Kreider и соавт., 2010), в классификации пищевых добавок в спортивной нутрициологии с точки зрения доказательной медицины ВСАА входят в группу стимуляторов набора мышечной массы (категория «А» - ЕЕА, категория «В» - ВСАА) и в группу веществ, повышающих физическую готовность (категория «В» - ЕЕА и ВСАА) (таблица 5). Аналогичным образом, ВСАА, как вещества, обладающие эргогенным действием, включены во все современные классификации средств НМП спортсменов. '''Таблица 5. Классификация пищевых добавок (БАДов) в спортивной нутрициологии по направленности действия и степени доказательности (выдержка из R.B.Kreider и соавт., 2010).''' {| class="wikitable"|-! Категория по степени доказательности !! БАДы для развития мышц !! БАДы для снижения веса !! БАДы, повышающие физическую готовность|-| А. Эффективные и безопасные || Смеси для набора мышечной массы ([[гейнер]]ы)<br />[[Креатин]]<br />[[Протеин]]ы<br />'''ЕАА''' || Низкокалорийная функциональная пища<br />[[Кофеин]]<br />Термогенные БАДы || [[Спортивные напитки]]<br />[[Углеводы]]<br />Креатин<br />[[Фосфат натрия|Натрия фосфат]] и [[Бикарбонаты (бикарбонатная буферная система)|бикарбонат]]<br />Кофеин<br />[[Бета-аланин]]|-| В. Возможно эффективные || [[HMB для набора мышечной массы|НМВ]] ([[Спорт высших достижений (большой спорт)|спорт высших достижений]])<br />'''ВСАА''' || Препараты Са<br />[[Экстракт зеленого чая]]<br />Конъюгированная линолевая к-та<br />Диета с высоким содержанием [[Пищевые волокна|пищевых волокон]] || '''ЕАА, ВСАА'''<br />НМВ<br />[[Глицерол (Глицерин)|Глицерол]]<br />Пост-тренировочные смеси (протеин+углеводы) |-| С. Недостаточно данных || α-кетоглутарат<br />α-кетоизокапроат<br />[[ZMA]]<br />Орнитина α-KG || [[Фосфатидилхолин|Фосфатидил холин]]<br />Гимнема сильвестри<br />[[Бетаин (Betaine)|Бетаин]]<br />[[Форсколин]]<br />DHEA || МСТ |-| D. Скорее неэффективные и/или опасные || [[Изофлавоны (изофлавоноиды)|Изофлавоны]]<br />Сульфополисахариды и др. || [[L-карнитин]]<br />[[Фосфаты]]<br />Растительные диуретики и др. || [[Рибоза]], Инозин, [[Глутамин|L-Глутамин]] в чистом виде (не дипептиды)|== Теория «центральной» и «периферической» усталости» и влияние ВСАА ==Усталость при длительных физических нагрузках наступает обычно в течение первого часа. При высокоинтенсивных коротких (2-7 минут) упражнениях с постоянным изменением направления движений она развивается преимущественно в быстрых мышечных волокнах, в отличие от медленного типа волокон. Поскольку активация мышц обусловлена центральными (сигналы из ЦНС) и периферическими (нервно-мышечная передача, реакция непосредственно мышечной ткани) механизмами, то и усталость (истощение) делится на периферическую и центральную. Центральная усталость связана с повышением нейромедиаторов в различных структурах мозга, в первую очередь, серотонина, образующегося из аминокислоты триптофана (Е.А.Newsholme, Е.Blomstrand, 2006). Периферическая усталость, в отличие от центральной, связана с истощением метаболических возможностей мышц и медиаторов нервно-мышечной передачи (R.E.C.Wildman, 2004). Важным положительным свойством ВСАА, дополняющим спектр их эргогенного действия, является способность снижать субъективное чувство усталости и отодвигать порог возникновения чувства полного истощения при длительных изматывающих тренировках. Превентивный прием ВСАА до нагрузки улучшает психомоторное состояние спортсмена, что отражается, в частности, укорочением времени реакции (Т.Mikulski и соавт., 2002). Доза 7 г ВСАА за час до нагрузки у мужчин-футболистов укорачивает время реакции примерно на 10% до и после тренировки (Р.Wisnik и соавт., 2011), что является показателем снижения центральной усталости. ВСАА подавляют возрастание концентрации лактата и его высвобождение в мышцах в процессе физической нагрузки, увеличивают лактатный порог (D.A.MacLean и соавт. 1996; К.Matsumoto и соавт., 2009). Механизмом такого действия ВСАА считается торможение метаболизма триптофана и снижение серотонина в мозге. == Влияние ВСАА на мышечные повреждения в условиях постоянных нагрузочных тренировок == Как известно, усиленные тренировки, особенно с отягощениями, вызывают микроповреждения волокон скелетных мышц. Эти микротравмы тем сильнее, чем больше и продолжительнее нагрузки. При отсутствии должного восстановления, микроповреждения накапливаются и могут переходить в хроническую фазу, ограничивая возможности спортсмена (G.Howatson, K.A.van Someren, 2008). В связи с этим, важной характеристикой нутриента, применяемого в спорте, является, наряду с эргогенным действием, способность предупреждать и уменьшать мышечные повреждения, вызывающие временное снижение мышечной силы, повышающие пассивное напряжение мышц и остроченную их болезненность. С этих позиций ВСАА рассматриваются рядом авторов в качестве перспективного направления (K.Nosaka и соавт., 2006; Y.Shimomura и соавт., 2006). Основой для такого подхода являются данные о механизмах действия ВСАА и, в первую очередь, лейцина, описанные в данном обзоре выше: подавление мышечного протеолиза; образование в процессе деаминирования альфа-кето-изокапроата, угнетающего активность комплекса ВСКDH и ряд других (R.A.Harris и соавт., 2005; S.M.Hutson и соавт., 2005; N.E.Zanchi и соавт., 2008). В обзорной работе C.R.da Luz и соавторов (2011) суммированы результаты исследований влияния пищевых добавок ВСАА на развитие мышечных повреждений при физических нагрузках. Практически во всех исследованиях получены положительные результаты (таблица 6). Y.Shimomura и соавторы (2009) использовали однократный прием ВСАА (5,5 г ВСАА с 1 г зеленого чая) за 15 минут до выполнения серии упражнений (7 подходов по 20 приседаний) с оценкой концентраций свободных аминокислот в сыворотке крови у молодых нетренированных женщин. В плацебо-группе отмечалось значительное снижение концентраций ВСАА, в то время как эти показатели в опытной группе были в 2,2 раза выше. Авторы считают, что такие различия связаны со способностью пищевых добавок предотвращать процесс окисления ВСАА под влиянием физической нагрузки. В другой работе этих же авторов при аналогичных условиях проведения эксперимента обнаружена способность ВСАА снижать на 45% пик времени наступления болезненности мышц (2-3 дня после тренировки) и укорачивать продолжительность данного явления. В другой работе К.Nosaka и соавторы (2006) исследовали влияние аминокислотной смеси (BCAA; 60% незаменимых аминокислот), принимаемой за 30 минут до и сразу после физической нагрузки, а также 4 дня после (900 движений подъема гантели весом 1,8-3,4 кг рукой). Хотя не обнаружено различий в контрольной и опытной группе до и после нагрузки, в течение 4-х дней после проведения тренировки выявлено достоверное снижение креатин-киназы сыворотки крови (от 48 до 96 часов), миоглобина (от 24 до 96 часов) и болезнености мышц (от 24 до 96 часов) в контрольной группе по сравнению с плацебо-группой. Сходные результаты получены в исследованиях С.Р.Sharp и D.R.Pearson (2010) при использовании курсового назначения только ВСАА в классической пропорции (1,8 г лейцина, 0,75 г изолейцина и 0,75 г валина) в течение 3 недель до и 1 недели после высокоинтенсивной нагрузки на мышцы всего тела. Выявлено, что креатин-киназа сыворотки крови достоверно снижалась в группе с ВСАА. S.R..Jackman и соавторы (2010) применили более, чем вдвое увеличенную суточную дозу ВСАА (3,5 г лейцина, 2,1 г изолейцина и 1,7 г валина; разделенные на 4 приема), при оценке влияния ВСАА на мышечные повреждения, вызванные эксцентрическими упражнениями. Особенностью этого исследования было исключение любых других нутриентов из диеты, чтобы оценить влияние ВСАА «в чистом виде». Протокол физической нагрузки в день тестирования включал 12 подходов по 10 повторений только [[Эксцентрическая фаза|эксцентрической фазы]] с весом в 120% от [[Повторный максимум|повторного максимума]] [[Концентрическая фаза|концентрической фазы]]. Протокол приема пищевых добавок: за 30 минут до нагрузки; через 1,5 часа после; между ланчем и обедом; перед сном; в последующие 2 дня – 4 дозы, принимаемые между приемами пищи. Такой режим обеспечивал более равномерное поступление ВСАА в организм в течение дня и, следовательно, более равномерное повышение концентрации ВСАА в сыворотке крови. Физическая нагрузка вызывала повышение креатин-киназы и миоглобина, и прием ВСАА не влиял на эти процессы. Однако, пост-тренировочная болезненность мышц снижалась под действием ВСАА на 64% по сравнению с плацебо-группой. Таким образом, '''ВСАА эффективны в снижении болезненности мышц и микроповреждений, возникающих при интенсивных силовых нагрузках, вне связи с процессами воспаления. Этот феномен ускоряет восстановление и готовность к следующему тренировочному циклу, и в спортивной нутрициологии носит название «влияние на повторный цикл нагрузки» (“repeated bout effect”). Курсовой профилактический прием пищевых добавок ВСАА в течение 1-3 недель в средней дозе не менее 5-6 г/день (при классическом соотношении лейцина, изолейцина и валина и разделении на 4 приема с равными промежутками времени в течение дня) является частью многокомпонентной стратегии предупреждения и смягчения болезненности и повреждения мышц, вызываемыми физическими нагрузками.''' Механизмы, лежащие в основе защитного действия ВСАА в отношении мышечных повреждений и ускорения регенерации, остаются не выясненными, и требуют дальнейших расширенных исследований. '''Таблица 6. Результаты исследований влияния пищевых добавок ВСАА на мышечные повреждения при постоянных тренировках у человека (C.R.da Luz и соавт., 2011)''' {| class="wikitable"|-! Авторы !! Протокол тренировок !! Протокол пищевых добавок !! Результаты|-| Shimomura и соавт., 2009 || Приседания (7 подходов по 20 повторений) || 5,5 г ВСАА с 1 г зеленого чая за 15 мин до нагрузки || Ослабление окисления ВСАА сыворотки, вызванного нагрузкой|-| Shimomura и соавт., 2006 || Приседания (7 подходов по 20 повторений) || 5 г ВСАА за 15 мин до нагрузки || Снижение пика времени наступления болезненности мышц при физ. нагрузке|-| Nosaka и соавт., 2006 || 900 движений (30 мин) подъем гантели рукой весом от 1,88 до 3,44 кг || Аминокислотная смесь с ВСАА (60% незаменимых АК) || Снижение сывороточной СК, МГ и болезненности мышц; нет изменений изометрической MVC|-| Sharp, Pearson, 2010 || Нагрузка для всего тела (RE) (3 подхода по 8 RM, 8 упражнений) || ВСАА (1,8 г лейцина, 0,75 г изолейцина, 0,75 г валина) 3 недели до и 1 неделю в ходе выполнения протокола нагрузки || Снижение сывороточной СК|-| Jackman и соавт., 2010 || Эксцентрические упражнения (12 подходов по 10 повторений при 120% концентрических 1RM – макс. разовый результат) || 7 г ВСАА/день (4 приема) на следующие 2 дня после нагрузки || Снижение болезнености мышц без изменения сывороточной СК и МГ|}''Примечания:'' CR – креатинкиназа; MVC – максимальное произвольное сокращение; RE – постоянные тренировочные нагрузки; RM – максимум повторений; МГ – миоглобин. Эффективность ВСАА в отношении DOMS подтверждена у профессиональных спортсменов высшей квалификации. В рандомизированном двойном-слепом плацебо-контролируемом исследовании (G.Howatson и соавт., 2012) у игроков национальной лиги (регби и футбол) Великобритании (средний возраст 23 года, рост 178 см, вес 79,6 кг) участники принимали ВСАА (соотношение лейцина, изолейцина и валина 2:1:1) в виде порошка с разведением каждой разовой порции в 300 мл воды, или плацебо, дважды в день (утром и вечером) в разовой дозе 10 г (суммарно 20 г в день) в течение 12 дней. [[Image:BCAA_Ris_5.jpg|250px|thumb|right|Рис.5. Уровень болевых ощущений спортсменов по 200 мм визуальной аналоговой шкале (VAS, ось ординат) при разгибании в коленном суставе на 90° до (pre) и после приема ВСАА (ось абсцисс, часы). Остальные объяснения в тексте. Из G.Howatson и соавторов (2012)]][[Image:BCAA_Ris_6.jpg|250px|thumb|right|Рис.6. Уровень креатин-киназы (ось ординат) в сыворотке крови спортсменов до (pre) и после приема ВСАА (ось абсцисс, часы). Остальные объяснения в тексте. Из G.Howatson и соавторов (2012).]][[Image:BCAA_Ris_7.jpg|250px|thumb|right|Рис.7. Уровень максимального произвольного сокращения мышц-разгибателей коленного сустава (MVC) в % от исходных значений (принятых за 100%, ось ординат) до (pre) и после приема ВСАА (ось абсцисс, часы). Остальные объяснения в тексте. Из G.Howatson и соавторов (2012).]]Доза ВСАА основывалась как на инструкции к коммерческой форме ВСАА, так и на результатах предыдущих исследований (E.Blomstrand и соавт., 1995; J.S.Coombes, L.R.McNaughton, 2000). Дополнительно участники получали болюс 20 г ВСАА за час до тренировки и сразу после нее. Для большей стандартизации исследования участники придерживались регулярной диеты, назначенной врачом, и не принимали каких-либо других добавок (протеинов, гейнеров, фармаконутриентов и т.п.). Протокол физической нагрузки (тренировки), вызывающей микроповреждения скелетных мышц, включал разработанный еще в СССР «Vertical Jump Plyometric Shock Training»: 100 прыжков с высоты 60 см с максимальной силой (drop-jumps, 5 сетов по 20 прыжков с 10 сек интервалом между прыжками и 2-я минутами отдыха между сетами). Такой протокол нагрузки гарантированно дает увеличение мышечных микротравм (S.R.Jackman и соавт., 2010). В образцах крови определялся уровень креатин-киназы (СК), с помощью визуальной аналоговой 200 мм шкалы оценивался уровень болезненности мышц во время разгибания в коленном суставе под углом 90°. Оценивалось также изометрическое максимальное произвольное сокращение (MVC) на разгибателях доминирующей ноги. Тестировочная физическая нагрузка вызывала микроповреждения мышц, что отражалось увеличением концентрации сывороточной СК примерно в 4 раза (рис.6). На фоне ВСАА все биохимические и физиологические изменения, вызванные нагрузкой, были достоверно существенно ниже по сравнению с плацебо: рост СК снижался на 19%, уровень болезненности мышц – на 30%, падение MVC уменьшалось на 12% (рис.5,6,7). Данная работа является первым доказательным с клинической точки зрения исследованием эффективности ВСАА у профессиональных спортсменов в игровых видах спорта в отношении повреждений мышц в процессе специфических для футбола и регби упражнений. Особенностью профессиональных спортсменов является гораздо меньший объем повреждений мышц во время тяжелых нагрузок по сравнению с любителями, что обусловлено постоянными тренировками и адаптацией к таким нагрузкам. Несмотря на это, положительные эффекты ВСАА в высоких дозах проявляются достаточно четко. На фоне ВСАА болезненность мышц возникает позже, чем в контрольной группе, а ее выраженность достоверно меньше, что влечет меньшее ограничение подвижности в суставах. Ускоряется в результате и процесс восстановления при приеме ВСАА. '''Заключение''': полученные результаты предлагают новую высокодозную схему применения пищевых добавок ВСАА (лейцин, изолейцин, валин в соотношении 2:1:1) для профессиональных спортсменов высокой квалификации с целью снижения повреждения и болезненности мышц, вызываемых тяжелыми физическими нагрузками, предупреждения падения функциональной способности скелетной мускулатуры и ускорения восстановления после тренировок. Схема включает курсовой 7-дневный прием ВСАА в высоких дозах - 20 г/день с разделением на две равные дозы в течение дня, - до (с дополнительным приемом 20 г непосредственно перед и после «повреждающей» нагрузки) и в течение 4-х дней после цикла эксцентрических упражнений со смещением. Высокодозная длительная нутритивно-метаболическая поддержка (НМП) с помощью пищевых добавок ВСАА в профессиональном спорте – новое направление в спортивной нутрициологии, которое требует ретроспективного анализа и его эргогенных свойств в повышенных дозах, и новых исследований в отношении мышечной силы и мощности, а также влияния на выносливость. '''На основании всего вышеизложенного, ВСАА включены в современную классификацию средств предупреждения и лечения отсроченного постнагрузочного повреждения мышц (DOMS или EIMD) в спорте''' (V.Contro и соавторы, 2016), наряду с эпигаллокатехином галлатом (в составе зеленого чая), N-ацетилцистеином, таурином, цитруллина малатом и L-глутамином и его производными (дипептидами). Из современной классификации удалены такие популярные пищевые добавки как L-карнитин и коэнзим Q10 (нет доказательного эффекта, но есть побочное действие). == Влияние ВСАА на иммунитет спортсменов == Снижение [[иммунитет]]а у спортсменов во многом обусловлено белковой недостаточностью, особенно вероятной у веганов и вегетарианцев. В условиях интенсивных и длительных тренировок необходимо избегать иммунодефицита и обеспечивать адекватное поступление аминокислот. Хотя в эксперименте показан позитивный эффект ВСАА на иммунную функцию, клинических исследований в спорте крайне мало. В работе R.A.Bassit и соавторов (2002) пищевые добавки ВСАА в дозе 6 г/день в течение 15 дней до участия в 30-км беге в триатлоне у мужчин предотвращали снижение пролиферации лимфоцитов и увеличивали их продукцию, а также IL-2 и γ-интерферона по сравнению с плацебо, увеличивали поступление мышечного глутамина в кровоток, предотвращали пост-тренировочное снижение глутамина в плазме, ослабляли снижение иммунологических функций. ВСАА являются большим источником азота для образования глутамина в мышечных клетках (см. метаболизм ВСАА выше). Однако, прямых количественных данных об изменении параметров иммунитета под влиянием ВСАА в условиях физических постоянных нагрузок нет. В связи с этим, на данном этапе целесообразно комбинировать ВСАА с веществами, потенциально способными стимулировать иммунитет. 
== Читайте также ==
*[[Исследования эффектов BCAA]]
*[[Прием BCAA]]
*[[BCAA и тренировки]]
*[[L-карнитин: вред и побочные эффекты]]
*[[Карнитин (медицинское применение)]]
*Almeida C.C., Alvares T.S., Costa M.P., C.A.Conte-Junior. Protein and Amino Acid Profiles of Different Whey Protein Supplements. J.Dietary Suppl., 2015, 3:1-11.
*Bassit R.A., Sawada L.A., Bacurau R.F. et al. Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition, 2002,18(5):376-379.
*Blomstrand E., Hassmen P., Ekblom B., Newsholme E.A. Administration of branched-chain amino acids during sustained exercise—effects on performance and on plasma concentration of some amino acids. Eur.J.Appl.Physiol.Occup.Physiol., 1991, 63(2):83-88.
*Blomstrand E., Andersson S., Hassmen P. et al. Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol.Scand., 1995, 153:87–96.
*Blomstrand E., Hassme´n P., Ek S., Ekblom B., Newsholme E.A. Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol. Scand., 1997, 159:41–49.
*Blomstrand E., Essen-Gustavsson B. Changes in amino acid concentration in plasma and type I and type II fibers during resistance exercise and recovery in human subjects. Amino Acids, 2009, 37: 629-636.
*Brosnan J.T., Brosnan M.E. Branched-Chain Amino Acids: Enzyme and Substrate Regulation. J.Nutr., 2006, 136: 207S–211S.
*Burke L. M. branched-Chain Amino Acids (BCAAs) and Athletic Performance. International Sports Medicine Journal, 2001, 2 (3).
*Campbell B., Kreider R.B., Ziegenfuss T. et al. International Society of Sports Nutrition position stand: protein and exercise. J.Int.Soc.Sports Nutr., 2007, 4:8.
*Carli G.,Bonifazi M., Lodi L. et al. Changes in exercise-induced hormone response to branched chain amino acid administration. Eur.J.Appl.Physiol., 1992,. 64, 272-277.
*Consumer Lab. Protein powders and drinks review—for body building, sports & dieting. 2014. Accessed Jun. 21, 2014.
*ConsumerReport.org. Consumer Reports Magazine. How much protein? 2010. Accessed Jun. 23, 2014.
*Cynober L.C., Harris R. A. Symposium on Branched-Chain amino acids: Conference summery. J.Nutrition, 2006, 136: 333-336.
*da Luz C.R., Nicastro H., Zanchi N.E. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans. J.Intern.Soc. Sports Nutr., 2011, 8:23.
*Davis J.M., Welsh R.S., De Volve K.L., Alderson N.A. Effects of branched chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int.J.Sports Med., 1999, 20:309–314.
*Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005) National Academy of Sciences. Institute of Medicine. Food and Nutrition Board.
*Dudgeon W.D., Kelley E.P., Scheett T.P. In a single-blind, matched group design: branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet. J.Intern.Soc.Sports Nutr., 2016, 13:1-11.
*Farnfield M.M., Trenerry C., Carey K.A., Cameron-Smith D. Plasma amino acid response after ingestion of different whey protein fractions. Intern.J.Food Sci.Nutr., 2009, 60(6):476-486.
*Garlick P.J., Grant I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J., 1988, 254(2):579-584.
*Hefler S.K.,Wildman L., Gaesser G.A. et al. Branched-chain amino acid (BCAA) supplementation improves endurance performance in competitive cyclists. Medicine and Science in Sports and Exercise, 1993, 25, S24 (abstract).
*Howatson G., van Someren K.A. The prevention and treatment of exerciseinduced muscle damage. Sports Med., 2008, 38(6):483-503.
*Howatson G., Hoad M., Goodall S. et al. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J.Intern.Soc.Sports Nutr., 2012, 9:20.
*Hutson S.M., Sweatt A.J., Lanoue K.F. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J.Nutr., 2005, 135(6 Suppl):1557S-1564S.
*Jackman S.R., Witard O.C., Jeukendrup A.E., Tipton K.D. Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med.Sci.Sports Exerc., 2010, 42(5):962-970.
*Karlsson H.K., Nilsson P.-A., Nilsson J. et al. Branched-Chain amino acids increase p70s6k phophoralation in human skeletal muscle after resistance exercise. American Journal of Physiology Endocrinolgy and Metabolism, 2004, 287: 1-7.
*Koba T., Hamada K., Sakurai M. et al. Branched-chain amino acids supplementation attenuates the accumulation of blood lactate dehydrogenase during distance running. J.Sports Med.Phys.Fitness, 2007, 47:316–322.
*Koopman R., Wagenmakers A.J., Manders R.J. et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am.J.Physiol.Endocrinol.Metab., 2005, 288(4):E645-653.
*Kreider R.B., Wilborn C.D., Taylor L. et al. ISSN exercise & sport nutrition review: research and recommendations. J.Intern.Soc.Sports Nutr., 2010, 7:7-50.
*Madsen K., MacLean D.A., Kiens B., Christensen D. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J.Appl.Physiol.,1996, 81(6):2644-2650.
*Matsumoto K., Koba T., Hamada K. et al. Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J.Sports Med.Phys.Fitness, 2009, 49:424–431.
*Mayers J.R., Torrence M.E., Fiske B.P. Analysis of Whole-Body Branched-Chain Amino Acid Metabolism in Mice Utilizing 20% Leucine 13C6 and 20% Valine 13C5 Mouse Feed. Cambridge Isotope Laboratories, Inc. isotope.com, 2014.
*MacLean D.A., Graham T.E., Saltin B. Stimulation of muscle ammonia production during exercise following branched-chain amino acid supplementation in humans. J.Physiol., 1996, 493: 909-922.
*Mikulski T., Ziemba A.W., Chmura J. et al. The effect of supplementation with branched chain amino acids (BCAA) on psychomotor performance during graded exercise in human subjects. Biol Sport, 2002, 19: 295-301.
*Mittleman K.D., Ricci M.R., Bailey S.P. Branched-chain amino acids prolong exercise during heat stress in men and women. Med.Sci.Sports Exerc., 1998, 30:83–91.
*Newsholme E.A.,Parry-Billings M., McAndrew M. et al Biochemical mechanism toexplain some characteristics of overtraining. In Brouns F (editor):Medical Sports Science, 1991, 32, Advances in Nutrition and Top Sport(pages 79-93). Basel, Germany: Karger.
*Newsholme E.A., Blomstrand E. Branched-chain amino acids and central fatigue. J Nutr., 2006, 136(1 Suppl), 274S-276S.
*Norton L.E., Layman D.K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J.Nutr., 2006, 136(2):533–537.
*Nosaka K., Sacco P., Mawatari K. Effects of amino acid supplementation on muscle soreness and damage. Int.J.Sport Nutr.Exerc.Metab., 2006, 16(6):620-635.
*Sharp C.P., Pearson D.R. Amino acid supplements and recovery from highintensity resistance training. J Strength Cond Res 2010, 24(4):1125-1130.
*Sowers S. A Primer On Branched Chain Amino Acids. Huntington College of Health Sciences, 2009, 1-6.
*Spillane M., Schwarz N., Willoughby D.S. Heavy resistance training and peri-exercise ingestion of a multi-ingredient ergogenic nutritional supplement in males; effects on body composition, muscle performance and markers of muscle protein synthesis. J.Sport Sci.Med., 2012, 13:894–903.
*Tipton K.D., Elliott T.A., Ferrando A.A. et al. Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Applied Physiology, Nutrition & Metabolism, 2009, 34:151-161.
*Watson P., Shirreffs S.M., Maughan R.J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur.J.Appl.Physiol., 2004, 93:306–314.
*Wildman R.E.C. Branched-Chain Amino Acids. ed. I. Wolinsky, and J.A. Driskell. Boca Raton, FL.: CRC 2004, Nutritional Ergogenic Aids, 47–59.
*Wisnik P., Chmura J., Ziemba A.W. et al. The effect of branched chain amino acids on psychomotor performance during treadmill exercise of changing intensity simulating a soccer game. Appl.Physiol.Nutr.Metab., 2011, 36(6): 856-862.
*Wu G. Intestinal Mucosal Amino Acid Catabolism. . J. Nutr., 1998, 128: 1249–1252.
*Zanchi N.E., Nicastro H., Lancha A.H.Jr. Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies. Nutr.Metab. (Lond), 2008, 5:20.
[[Категория:Спортивное_питание]]
1759
правок

SportWiki энциклопедия

Партнёр магазин спортивного питания Спортфуд, где представлена сертифицированная продукция